• Title/Summary/Keyword: dicom

Search Result 253, Processing Time 0.024 seconds

A Convergence Study on the 5-axis Machining Technology using the DICOM Image of the Humerus Bone (위팔뼈 의료용 디지털 영상 및 통신 표준 영상을 이용한 5축 가공기술의 융합적 연구)

  • Yoon, Jae-Ho;Ji, Tae-Jeong;Yoon, Joon;Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.115-121
    • /
    • 2017
  • The present study aimed to obtain basic knowledge of a customized artificial joint based on the convergence research of Digital Imaging and Communications in Medicine(DICOM) and 5-axis machining technology. In the case of the research method, three-dimensional modeling was generated based on the medical image of the humerus bone, and the shape was machined using a chemical wood material. Then, the anatomical characteristics and the modeling machining computation times were compared. The results showed that the Stereolithography (STL) modeling required twice more time for semi-finishing and 10 times more time for finishing compared to the Initial Graphics Exchange Specification(IGES) modeling. For the 5-axis machining humerus bone, the anatomical structures of the anatomic neck, greater tubercle, lesser tubercle, and intertubercular groove were similar to those in the three-dimensional medical image. In the future, the convergence machining technology, where 5-axis machining of various structures(e.g., the surgical neck undercut of the humerus bone) is performed as described above, can be efficiently applied to the manufacture of a customized joint that pursues the precise model of a human body.

Development of 4D CT Data Generation Program based on CAD Models through the Convergence of Biomedical Engineering (CAD 모델 기반의 4D CT 데이터 제작 의용공학 융합 프로그램 개발)

  • Seo, Jeong Min;Han, Min Cheol;Lee, Hyun Su;Lee, Se Hyung;Kim, Chan Hyeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.131-137
    • /
    • 2017
  • In the present study, we developed the 4D CT data generation program from CAD-based models. To evaluate the developed program, a CAD-based respiratory motion phantom was designed using CAD software, and converted into 4D CT dataset, which include 10 phases of 3D CTs. The generated 4D CT dataset was evaluated its effectiveness and accuracy through the implementation in radiation therapy planning system (RTPS). Consequently, the results show that the generated 4D CT dataset can be successfully implemented in RTPS, and targets in all phases of 4D CT dataset were moved well according to the user parameters (10 mm) with its stationarily volume (8.8 cc). The developed program, unlike real 4D CT scanner, due to the its ability to make a gold-standard dataset without any artifacts constructed by modality's movements, we believe that this program will be used when the motion effect is important, such as 4D radiation treatment planning and 4D radiation imaging.

An Implementaion of Integrated Medical Information System using XML (XML을 이용한 통합 의료정보 시스템 구현)

  • 안철범;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.24-26
    • /
    • 2000
  • 기존 의료정보 시스템은 본질적으로 성격이 다른 텍스트 기반 정보와 의료 영상 정보를 HL7과 DICOM이라는 각기 다른 두 표준을 기반으로 다루어 왔다. 따라서 상이한 두 표준 상호간의 정보 교환의 필요성과 최근들어 인터넷을 통한 개방 시스템으로의 전환의 필요성이 증가되면서 이를 위한 적절한 대안이 요구되고 있다. 본 논문에서는 이질적인 두 표준간의 데이터 교환과 통합을 위하여 XML을 활용하는 방안을 제시하였다. 또한 두 표준의 통합 DTD를 기반으로 XML 문서를 생성하고 통합 의료정보를 웹 상에서 검색, 저장할 수 있는 통합 의료정보 시스템을 구현하였다.

  • PDF

Design of Block Cipher Algorithm for Medical Information Security (의료정보 보안을 위한 블록 암호 알고리즘의 설계)

  • Jeong, Hye-Myeong;Jeon, Mun-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.3
    • /
    • pp.253-262
    • /
    • 2001
  • 이 논문에서 제안한 MIT(Medical Information Transmission) 암호 알고리즘은 의료정보 전송을 위한 PACS의 표준 프로토콜인 DICOM표준을 위하여 설계되었다. 또한, 암호화에 민감한 영항을 미치는 요소 중에 사나인 서브키를 생성하기 위해 키 생성 일고리즘을 보다 복잡하게 설계함으로써 계산 복잡도의 증가와 확률 계산의 증가를 도모하였다.

  • PDF

Design of Adaptive Quantization Tables and Huffman Tables for JPEG Compression of Medical Images (의료영상의 JPEG 압축을 위한 적응적 양자화 테이블과 허프만 테이블의 설계)

  • 양시영;정제창;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.824-833
    • /
    • 2004
  • Due to the bandwidth and storage limitations, medical images are needed to be compressed before transmission and storage. DICOM (Digital Imaging and Communications in Medicine) specification, which is the medical images standard, provides a mechanism for supporting the use of JPEG still image compression standard. In this paper, we explain a method for compressing medical images by JPEG standard and propose two methods for JPEG compression. First, because medical images differ from natural images in optical feature, we propose a method to design adaptively the quantization table using spectrum analysis. Second, because medical images have higher pixel depth than natural images do, we propose a method to design Huffman table which considers the probability distribution feature of symbols. Therefore, we propose methods to design a quantization table and Huffman table suitable for medical images. Simulation results show the improved performance compared to the quantization table and the adjusted Huffman table of JPEG standard. Proposed methods which are satisfied JPEG Standard, can be applied to PACS (Picture Archiving and Communications System).

Design of the Web based Mini-PACS (웹(Web)을 기반으로 한 Mini-PACS의 설계)

  • 안종철;신현진;안면환;박복환;김성규;안현수
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • PACS mostly has been used in large scaled hospital due to expensive initial cost to set up the system. The network of PACS is independent of the others: network. The user's PC has to be connected physically to the network of PACS as well as the image viewer has to be installed. The web based mini-PACS can store, manage and search inexpensively a large quantity of radiologic image acquired in a hospital. The certificated user can search and diagnose the radiologic image using web browser anywhere Internet connected. The implemented Image viewer is a viewer to diagnose the radiologic image. Which support the DICOM standard and was implemented to use JAVA programming technology. The JAVA program language is cross-platform which makes easier upgrade the system than others. The image filter was added to the viewer so as to diagnose the radiologic image in detail. In order to access to the database, the user activates his web browser to specify the URL of the web based PACS. Thus, The invoked PERL script generates an HTML file, which displays a query form with two fields: Patient name and Patient ID. The user fills out the form and submits his request via the PERL script that enters the search into the relational database to determine the patient who is corresponding to the input criteria. The user selects a patient and obtains a display list of the patient's personal study and images.

  • PDF

Customized Model Manufacturing for Patients with Pelvic Fracture using FDM 3D Printer (FDM 방식의 3D 프린터를 이용한 골반 골절 환자의 맞춤형 모델제작)

  • Oh, Wang-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.370-377
    • /
    • 2014
  • At present trend 3D Printing technology has been using more efficiently than conventional subtractive manufacturing method in various medical fields, in particular this technology superior in saving production time, cost and process than conventional. Especially in orthopedics, an attractive attention has been paid by adopting this technology because of improving operation, operation accuracy, and reducing the patient's pain. Though 3D printing technology has enormous applications still in some hospitals have not been using due to having the problem of technical utilization of hardware, software & chiefly financial availability and etc. In order to solve these problems by reducing the cost and time, we have used CT images in pre-operative planning by directly making the pelvic fracture model with open source DICOM viewer and STL file conversion program, assembly 3D printer of FDM wire additive manufacturing. After having the customized bone model of six patients who underwent unstable pelvic fracture surgery, we have operated our system in orthopedic section of University Hospital through the clinician. Later, we have received better reviews and comments on utilization availability, results, and precision and now our system considered to be useful in surgical planning.