• Title/Summary/Keyword: diatomic chain

Search Result 2, Processing Time 0.017 seconds

Stability of matching boundary conditions for diatomic chain and square lattice

  • Ji, Songsong;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.255-268
    • /
    • 2018
  • Stability of MBC1, a specific matching boundary condition, is proved for atomic simulations of a diatomic chain. The boundary condition and the Newton equations that govern the atomic dynamics form a coupled system. Energy functions that decay along with time are constructed for both the boundary with the same type atoms and the one with different type atoms. For a nonlinear chain, MBC1 is also shown stable. Numerical verifications are presented. Moreover, MBC1 is proved to be stable for a two dimensional square lattice.

Electronic Structure and Chemical Bonding of La7Os4C9 (La7Os4C9의 전자구조와 화학결합)

  • Kang, Dae-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.266-271
    • /
    • 2009
  • In the recently synthesized rare earth transition metal carbide $La_7O_{s4}C_9$ one finds one-dimensional organometallic $[O_{s4}C_9]^{21-}$ polymers embedded in a $La^{3+}$ ionic matrix. The electronic structure of the polymeric $[O_{s4}C_9]^{21-}$ chain was investigated by density of states (DOS) and crystal orbital overlap population (COOP), using the extended Huckel algorithm. A fragment molecular orbital analysis is used to study the bonding characteristics of the $C_2$ units in $La_7O_{s4}C_9$ containing $C_2$ units and single C atoms as well. The title compound contains partially filled Os and carbon bands leading to metallic conductivity. As the observed distances already indicated, the calculations show extensive Os-C interactions. The C-C bond distance in the diatomic $C_2$ units ($d_{C-C}$=131 pm) in the solid is significantly increased relative to $${C_2}^{2-}$$ or acetylene, because antibonding $1{\pi}_g$ orbitals are partially filled by the Os-$C_2(1\;{\pi}_g)$ bonding contribution found at and below the Fermi level.