• Title/Summary/Keyword: diamond tool

Search Result 349, Processing Time 0.025 seconds

A study on the machinability of ceramics in zirconia system by low temperature cooling (지르코니아계 세라믹스의 저온냉각절삭과 공구마멸 해석에 관한 연구)

  • 김정두
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 1990
  • Crack of breaking toughness of most Ceramics material is 1-5MPa .root.m but that of Zirconia Ceramics is improved to be 6-8MPa .root.m and its development of machining difficult-to-machine material is on the rise as urgent subject. For general Zirconia Ceramics machining, diamond grinding wheel is generally used by selecting an appropriate one and establishing grinding condition but due to such limitations as economics, grinding efficiency and machining geometry, great interest in machining method being used for diamond tool is emphasized. But it is reported that diamond tool is oxidized by cutting heat in the air and is graphitized in vacuum, which causes bad effects on tool life. In this study, to restraint cutting heat the internal side of tool is cooled, and restraint low temperature cooling system and being experimented. Further, the machinability of diamond tool for Zirconia Ceramics machining is analyzed with respect to tool wear and stress.

  • PDF

A Study on the Precision Cutting Characteristics by the Diamond Tool on the Cutting Distance (다이아몬드 공구의 절삭거리에 따른 정밀가공 특성 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.127-133
    • /
    • 1998
  • This research intends to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) and a poly-crystal diamond(PCD) tool on the cutting distance. In case of an MCD tool, as the cutting distance increases, the surface roughness becomes worse and the standard deviation of surface roughness is small. In case of a PCD tool, as the cutting distance increases, the surface roughness becomes stable with a large standard deviation. The cutting force ratio(Ft/Fn) decreases as the nose radius increases and the decreasing ratio becomes larger for small nose radius.

  • PDF

A Study on the Ultraprecision Cutting of Aluminium Alloy by the Diamond Tool (Diamond 공구에 의한 aluminium 합금의 초정밀 절삭가공에 관한 연구)

  • Yu, Ki-Hyun;Mun, Sang-Don;Yu, Jong-Sun;Kim, Tae-Young;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.78-83
    • /
    • 1996
  • This paper presents the characteristics of surface roughness and cutting force in ultraprecision cutting of aluminium alloy using natural diamond tools whose edge radii are smaller than those of tools made of other materials. The feed rate and depth of engagement were set to be a micrometer order. After measuring the surface roughness of machined surface and cutting force for each cutting condition, the relations between the surface quality and its condition were investigated qualitatively. If the feed rate was under a certain limit, the machined surface quality was deteriorated unexpectedly. This is supposed to have happened due to vibration leading its condition to abnormal one. In a certain situation the machined surface roughness by a natural diamond tool was inferior to that made by a carbide tool whose cutting edge radius is larger. This is supposed to be caused by not normal machining but burnishing effect.

  • PDF

Machining of Micro Groove using Diamond Tool (다이아몬드 공구를 이용한 미세 홈 가공)

  • 임한석;김창호;김봉향;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.75-79
    • /
    • 1995
  • A cutting experiment using diamond tool was performed to make the die cabity which is composed of micro groove with mirror surface. Fine cutting depth was generated by the elastic recovery of the modified tool holder on the conventional M/C. Surface roughness and profile were investigated with cutting speed and depth and through the low cutting speed of 10mm/min, Rmax 0.005 .mu. m or less of machined surface could be achieved.

  • PDF

Resistance to Abrasive Wear of Materials Used as Metallic Matrices in Diamond Impregnated Tools

  • Konstanty, Janusz;Kim, Tai-Woung;Kim, Sang-Beom
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1132-1133
    • /
    • 2006
  • Metal-bonded diamond impregnated tools are being increasingly used in the processing of stone and ceramics, road repair, petroleum exploration, etc. Although the main tool wear mechanisms have been identified, the scientific background is inadequate and fundamental research has to be carried out to better understand the tool field behaviour. This work addresses the complex issues of modelling abrasive wear of the metallic matrix under laboratory conditions. The generated data indicates that the matrix wear resistance can be assessed in a simple manner; whereas tests carried out on diamond impregnated specimens may aid prediction of the tool life in abrasive applications.

  • PDF

Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool (다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성)

  • Kim, Seon-Ah;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF

Machinability of Pre-sintered Alumina Ceramics (알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능-)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF

Wear of Single Crystal Diamond(SCD) Tools in Ultra Precision Turning of Electro-Nickel Plated Drum (전해니켈도금된 대면적 롤금형 가공시 단결정 다이아몬드공구의 마모에 관한 연구)

  • Lee, D.Y.;Hong, S.H.;Kang, H.C.;Choi, H.Z.;Lee, S.W.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.621-628
    • /
    • 2009
  • Nickel-phosphorus alloys are attractive materials for diamond turning applications such as fabrication of large optics and other high precision parts. It is also well-known that the higher phosphorus content of the alloys minimizes the diamond tool wear. Due to the weakness of electoless nickel plating that the phosphorus contents is limited to 13-14% (wgt), increased attention has been paid at electro-nickel plating which enables the alloys with 15-16% phosphorus. In this study, experiments were carried out to observe the wear characteristic of single crystal diamond tools in micro-grooving of electro-nickel plated drums. The experiments shows that long distance (50km) machining of micro-grooving on electro-nickel plated drum is possible with a single crystal diamond tool without any significant tool wear and defective machined surface.

Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications (AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용)

  • Park J.W.;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF