• Title/Summary/Keyword: diamond machining

Search Result 313, Processing Time 0.026 seconds

Model for predicting tool life of diamond abrasive micro-drills during micro-drilling of ceramic green bodies (세라믹 성형체의 미소구멍 가공 시 다이아몬드 입자 전착 드릴의 공구 수명 예측 모델)

  • 이학구;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.593-598
    • /
    • 2003
  • Ceramic plates containing many micro-holes are used in diverse applications such as MCP (Microchannel Plate). catalytic converters, filters, electrical insulators in integrated circuits, and so on. One of the efficient methods for machining many holes in ceramic plates is wet drilling of ceramic green bodies followed by sintering them. Since the strength of ceramic green bodies is much lower than the strength of sintered ceramic plate, ceramic green bodies can be drilled with high feed rate. The axial force during micro-drilling of ceramic green bodies increases rapidly at high feed rate, which induces the crack in workpiece. Therefore, the tool lift of micro-drill with respect to feed rate may be determined by the predicting increase of axial force. In this work, the axial force during micro-drilling was calculated using the chip flow model on the micro-drill tip. from which the tool life of diamond abrasive micro-drill during micro-drilling of ceramic green bodies was calculated.

  • PDF

An Research on Ultra Precisive Polishing Manufacturing Technology of Glass for Micromini and Super Wide-Angle Aspherics Glasses Lens. (초소형 초광각 비구면 유리렌즈의 초정밀 연삭가공기술에 관한 연구)

  • Kim, Doo-Jin;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.275-281
    • /
    • 2010
  • This research's goal is to process directly aspherics with big sagment and thin center thickness. If we can process directly aspherics with big sagment and thin center thickness, we think it greatly helps to reduce the time of developing optical system. We made very thin glass using diamond grinding whetstone regarding the trace of tool and the detailed drawing of tool super precisive aspherics that has 0.46mm center thickness and over $30^{\circ}$ segment, $0.1{\mu}m$ machining accuracy, 15nm surface accuracy. We think this research's result will be effective to open new market because it is applied not only cell phone optical system but also CCTV robot optical system, internet phone optical system. Also we expect to enhance the super strong brittle precisive process's possibility with super precisive processing technique that achieves 0.46mm glass center thickness as first in the world.

A Study on the Surface Grinding Characteristic of Engineering Cramics (엔지니어링 세라믹스의 평면 연삭 가공 특성에 관한 연구)

  • Kang, J.H.;Heo, S.J.;Kim, W.L.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.38-49
    • /
    • 1994
  • In this study, grindability of some representative engineering ceramics are experimentally investigated using resin bond diamond wheel with conventional surface grinding machine, and proper grinding conditions which can be obtained from various experimental results are established also for mechanical components which are proper to domestic circumstances with high reliability. And through the results of experiment, it is confirmed that grinding energies of the ceramics, especially in the case of $Al_2O_3$, are lower than steel with same machining condition in the conventional grinding because of their fine-brittle fracture mode type removal process, though the ceramics are well-known to unmachinable materials. And moreover, the total pass numbers needed for spark-out process to be completed are depend on their mechanical properties because that grinding stiffness is different from each other. The grinding force, ginding power and ground surface roughness are also measured and compared. Furthermore, the experiments carried out in this study, some useful results are obtained with can guide to grind engineering ceramics with conventional surface grinding machine.

  • PDF

A Study of Machining Optimization of Parts for Semiconductor Plasma Etcher (반도체 플라즈마 식각 장치의 부품 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.28-33
    • /
    • 2020
  • Plasma etching process employs high density plasma to create surface chemistry and physical reactions, by which to remove material. Plasma chamber includes silicon-based materials such as a focus ring and gas distribution plate. Focus ring needs to be replaced after a short period. For this reason, there is a need to find materials resistant to erosion by plasma. The developed chemical vapor deposition processing to produce silicon carbide parts with high purity has also supported its widespread use in the plasma etch process. Silicon carbide maintains mechanical strength at high temperature, it have been use to chamber parts for plasma. Recently, besides the structural aspects of silicon carbide, its electrical conductivity and possibly its enhanced life time under high density plasma with less generation of contamination particles are drawing attention for use in applications such as upper electrode or focus rings, which have been made of silicon for a long time. However, especially for high purity silicon carbide focus ring, which has usually been made by the chemical vapor deposition method, there has been no study about quality improvement. The goal of this study is to reduce surface roughness and depth of damage by diamond tool grit size and tool dressing of diamond tools for precise dimensional assurance of focus rings.

Processing Characteristics of Multi Layer Diamond Electrodeposition Tool (Multi Layer 다이아몬드 전착 공구의 가공특성에 관한 연구)

  • Cha, Seung-hwan;Yang, Dong-ho;Lee, Sang-hyeop;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.22-28
    • /
    • 2022
  • In the semiconductor and display component industries, the use of ceramic materials, which are high-strength materials, is increasing for ensuring durability and wear resistance. Among them, alumina materials are used increasingly. Alumina materials are extremely difficult to process because of their high strength; as such, research and development in the area of mineral material processing is being promoted actively to improve their processing. In this study, the processability of an electrodeposition tool is investigated using the electrodeposition method to smoothly process alumina materials. Furthermore, processing is conducted under various processing conditions, such as spindle speed, feed speed, and depth of cut. In addition, the processing characteristics of the workpiece are analyzed based on the tooling.

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.

A Study on the Monitoring of Grinding Stability Using AE Sensor in Electrolytic In-Process Dressing Grinding (전해 인프로세스 드레싱 연삭에서 AE를 이용한 가공안정성 감시에 관한 연구)

  • Kim, Tae-Wan;Lee, Jong-Ryul;Lee, Deug-Woo;Song, Ji-Bok;Choi, Dae-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1011-1017
    • /
    • 1999
  • Electrolytic in-process dressing grinding technique which enables application of metal bond wheels with fine superabrasives in mirror surface grinding operations has developed. It is possible to make efficient precision machining of hard and brittle material such as ceramic and hard metal by the employment of this technique. However, in order to ensure the success of performances such as efficient machining, surface finish, and surface quality, it is important to sustain the insulating layer that has sharply exposed abrasives in wheel surface. Using AE(Acoustic Emission) sensor, this paper will show whether the insulating layer sustains stably or not in real grinding time. And by comparing AErms value and surface roughness their thresholds for stable electrolytic in-process dressing grinding will be determined.

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

A Study on the Effect of Tip Radius of Diamond Stylus Machined by Ion Sputter in Surface Roughness Measurement (이온스파터 가공한 다이아몬드 촉침의 선단반경이 표면거칠기 측정에 미치는 영향)

  • Han, Eung-Gyo;No, Byeong-Ok;Yu, Yeong-Deok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.37-47
    • /
    • 1990
  • In accordance with the high precision of mechanical elements, it has been required to high precision in surface roughness measurement and, therefore, stylus tip radius is manufa- ctured less than 2 .mu. m through ion sputter machining. In this experiment, by suing ion sputter machined stylus pf fine tip, radius and lapping machined stylus, surface roughness of standard specimens, silicon wafer were measured and then Rmax, Ra, RMS value were investi- gatedaccording to the variation of tip radius of stylus. As a result, measuring error due to the variation of stylus tip radius in surface roughness measurement was decreased by using ion sputter machined stylus and also the measuring accuracy was improved. And the measuring variation of Ra, RMS calculated from correlation coefficient lager than 0.9 on the wave of short period and amplitude using ion sputter machined stylus of fine tip radius.

  • PDF

Grinding Technology for Surface Texturing (연삭기법을 이용한 패터닝 기술)

  • Ko, Tae Jo;Han, Do Sup;Qiu, Kang;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.367-373
    • /
    • 2014
  • Surface texturing is a machining process on the surface to give engineering functions. The representative process of the surface texturing is lotus effect to give hydrophobic property by the lithography and chemical etching, which is the bio mimic from the nature. Surface texturing can be manufactured by a lot of processes, in particular using mechanical method such as a precise diamond turning, grinding, rolling, embossing, vibrorolling, and abrasive jet machining (AJM). Among them, the grinding process is notable in terms of the wide range of texturing area and fast processing time. The patterning by grinding is done by the grooved grinding wheel on the work piece. In this case, the pattern shape is determined by the grinding conditions as well as the wheel dressing conditions. In this paper, experimental study on the pattern shapes were done and provide the feasibility in use for the large area patterning.