• Title/Summary/Keyword: diamond brazing

Search Result 15, Processing Time 0.022 seconds

Effect of Filler Metal in High Vacuum Brazing of Diamond Tools

  • Song, Min-Seok;An, Sang-Jae;Lee, Sang-Jin;Cheong, Ki-Jeong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1307-1308
    • /
    • 2006
  • The purpose of this study was to examine the interfacial reaction between diamond grits and Ni-based, Ag-based, brazing filler metal, respectively. The morphology of the interface between diamond grits and Ni-based, filler metal exhibited a very good condition after this heat treatment. Cr-carbide and Ni-rich compounds were detected by XRD analysis in the vicinity of the interface between diamond grits and Ni-based, filler metal after vacuum induction brazing. Chromium carbide is considered to play an important role in the high bonding strength achieved between diamonds grits and the brazing alloy.

  • PDF

Effect of Filler Metal Powder on Microstructure and Polishing Characteristics of the Brazing Diamond

  • Kim, Hoon-Dong;An, Jung-Soo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1138-1139
    • /
    • 2006
  • The present study has shown that the effect of boron and phosphorus in Ni-Cr-Si-X alloy to interfacial reactions and bonding strength of diamond-steel substrate, and the influence of various construction parameters on the formation of the topography of the tool. And these factors are required to making a good brazed tool. The microstructures and phase change of the brazed region were analyzed into SEM, EDS. According to the electron probe microanalysis, while brazing, the chromium present in the brazing alloy segregated preferentially to the surface of the diamond to form a chromium rich reaction product, which was readily wetted by the alloy.

  • PDF

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

Study on the interfacial reaction vacuum brazed junction between diamond and Ni-based brazing filler metal (진공 브레이징을 이용한 다이아몬드와 Ni계 페이스트의 계면 거동 연구)

  • Lee, Jang-Hun;Lee, Yeong-Seop;Im, Cheol-Ho;Lee, Ji-Hwan;Song, Min-Seok;Ji, Won-Ho;Ham, Jong-O
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.48-50
    • /
    • 2005
  • Advanced hard materials based on diamond are in common use. In this study our main goal was employed to analyze, the mechanisms for the rich phases and chromium carbide, interface of a diamond grits brazed to a Ni-based brazing filler metal matrix. When Ni-7Cr-3Fe-3B-4Si (wt. %) was utilized as the brazing alloy, an isothermal holding resulted in the various products(Ni-rich/Cr-rich domains, carbide). According to these results, the chemical compounds and chromium carbides products is considered to play an important role in brazing temperature and time. Especially chromium carbide has an influence on brazing junction properties.

  • PDF

The wetting and interfacial reaction of vacuum brazed junction between diamond grit(graphite) and Cu-13Sn-12Ti filler alloy (다이아몬드 Grit(흑연)/ Cu-13Sn-12Ti 필러합금 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chang-Hun;Lee, Chi-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.66-66
    • /
    • 2009
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites(diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature 940 $^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

  • PDF

The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy (다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chi-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

Identification and Microstructure Observation of Reaction Products formed at Alumina/Ag-33.5Cu-1.5Ti Brazing alloy Interface (알루미나의 Ag-33.5Cu-1.5Ti 브레이징 합금 계면에서 생성되는 반응층의 미세조직 관찰과 상 동정)

  • 최시경;권순용
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1045-1049
    • /
    • 1996
  • Pressureless-sintered polycrystalline alumina and carbon steel were joined with Ag-33.5Cu-1.5Ti (wt%) brazing alloy. SEM observation revealed that two reaction layers with different thicknesses were continuously formed between the alumina and the brazing alloy. A thick layer formed on the brazing alloy side was identified as Ti3(Cu0.93Al0.07)3O phase with diamond cubic structure. Another thin layer adjacent to the alumina was revealed as $\delta$-TiO phase of which the crystal structure was HCP with a lattice parameter of a0=0.419 nm and c0=0.284 nm. It was confirmed using XPS analysis that $\delta$-TiO was formed directly by a redox reaction of alumina with titanium ir, molten brazing alloy.

  • PDF

Measurement of Cohesion Force between Diamond and Matrix in CMP Pad Conditioner

  • Kang, Seung-Koo;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1128-1129
    • /
    • 2006
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond cohesion. Strong cohesion between diamond and metal matrix prevents macro scratch on the wafer during CMP Process. Typically the diamond tool has been manufactured by sintered, brazed and electro-plated methods. In this paper, some results will be reported of cohesion between diamond and metal matrix of the diamond tools prepared by three different manufacturing methods. The cohesion force of brazed diamond tool is found stronger than the others. This cohesion force is increased in reverse proportion to the contact area of diamond and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of Cr in metal matrix and C in diamond, which enhance the interfacial cohesion strength between diamonds and metal matrix.

  • PDF

Diamond Film Synthesis by MWCVD and Its Application to Cutting Tools (MWCVD에 의한 다이아몬드 필름의 합성과 절삭 공구에의 응용)

  • 서문규;김윤수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.979-985
    • /
    • 1993
  • Diamond films were synthesized using CH4-H2-Ar mixture gases by MWCVD, and cutting ability was tested after brazing them onto WC tools. Growth rates were in the range of 0.5~10${\mu}{\textrm}{m}$/hr depending on the deposition conditions, and diamond films with thickness of 100~300${\mu}{\textrm}{m}$ were obtained. Diamond tools brazed by RF induction method showed an enhanced cutting ability in the cutting test of Si single crystal rod.

  • PDF

The Metallization of Diamond Grits

  • Sung, James-C.;Hu, Shao-Chung;Chang, Yen-Shuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1134-1135
    • /
    • 2006
  • A revolutionary "Active Braze Coated Diamond" (ABCD) has been developed for bonding diamond grits firmly in the metal matrix. The molten braze is wetted and reacted with diamond to form strong chemical bond at the interface so that the diamond does not become knocked out of tools. The ABC is a nickel alloy that can form metallurgical diffusion bondswith the metal matrix. In essence, ABCD turns diamond into a metal grain so that the diamond tools can be made by conventional powder metallurgical process without being concerned about the poor bonding between matrix metal powder and the diamond as before.

  • PDF