• Title/Summary/Keyword: diamond

Search Result 2,365, Processing Time 0.028 seconds

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Friction and Wear of Polyimide-PTFE-Diamond Composites

  • Umeda, K.;Tanaka, A.;Takatsu, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.233-234
    • /
    • 2002
  • Diamond composites hold promise as a tribological material because of low friction and high wear resistance. We studied friction and wear of polyimide-20vol% PTFE-diamond composites in open air at room temperature, focusing on the effects of diamond size, and diamond content, sliding conditions, and mating material. Friction coefficient and wear tend to Increase with increasing diamond size and content. Composites of appropriate diamond size and content showed a friction coefficient below 0.1 and specific wear of $10^{-7}\;mm^3/Nm$. Friction and wear of composites sliding against stainless steel were higher than those of Al_2O_3$ an increase that became increasingly not able with increasing diamond size.

  • PDF

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

Planarization of Diamond Films Using KrF Excimer Laser Processing (KrF 엑사이머 레이저 법을 이용한 다이아몬드 박막의 평탄화)

  • Lee, Dong-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.318-323
    • /
    • 2000
  • The planarization of rough polycrystalline diamond films synthesized by DC arc discharge plasma jet CVD (chemical vapor deposition) was attempted using KrF excimer laser pulses. The effects of laser incidence angle and reaction gases (ozone and oxygen) on etching rate of diamond were studied. The temperature change of diamond and graphite with different laser fluences was calculated by computer simulation to explain the etching behavior of diamond films. The threshold energy density from the experiment for etching of pure crystalline diamond was about $1.7J/cm^2$ and fairly matched the simulation value. Preferential etching of a particular crystallographic plane was observed through scanning electron microscopy. The etching rate of diamond with ozone was lower than that with oxygen. When the angle of incidence was $80^{\circ}$ to the diamond surface normal, the peak-to-valley surface roughness was Significantly reduced from $20{\mu}m$ to $0.5{\mu}m$.

  • PDF

An Investigation of the Enhancement of Abrasive Ability of Diamond Film by Surface Modification (다이아몬드 박막의 표면 개질을 통한 연마성능 향상에 대한 실험적 고찰)

  • 나종주;이구현;남기석;이상로;백영준
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In order to identify the effect of lubricant films on abrasive abilities of diamond films, wear rates of Ruby balls slid over as grown diamond films and polytetrafluoroethylene films coated diamond films were compared by using pin-on-disk tribometer. Wear scars of Ruby balls were measured by SEM. Results showed that wear rates of Ruby balls slid over polytetrafluoroethylene coated diamond films were about 4 times lager than as grown diamond films. Coefficients of friction decreased with sliding distance at diamond disks but were almost unchanged at polytetrafluoroethylene coated ones. These results came from behaviors of wear debris, which adhered more strongly in the tracks of as grown diamond films than polytetrafluoroethylene coated ones.

Effect of Filler Metal in High Vacuum Brazing of Diamond Tools

  • Song, Min-Seok;An, Sang-Jae;Lee, Sang-Jin;Cheong, Ki-Jeong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1307-1308
    • /
    • 2006
  • The purpose of this study was to examine the interfacial reaction between diamond grits and Ni-based, Ag-based, brazing filler metal, respectively. The morphology of the interface between diamond grits and Ni-based, filler metal exhibited a very good condition after this heat treatment. Cr-carbide and Ni-rich compounds were detected by XRD analysis in the vicinity of the interface between diamond grits and Ni-based, filler metal after vacuum induction brazing. Chromium carbide is considered to play an important role in the high bonding strength achieved between diamonds grits and the brazing alloy.

  • PDF

Study on Metal/Diamond Binary Composite Coatings by Cold Spray

  • Kim, H.J.;Jung, D.H.;Jang, J.H.;Lee, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.240-241
    • /
    • 2006
  • Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with insitu powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.

  • PDF

NONLINEAR MIXED *-JORDAN TYPE n-DERIVATIONS ON *-ALGEBRAS

  • Raof Ahmad Bhat;Abbas Hussain Shikeh;Mohammad Aslam Siddeeque
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.331-343
    • /
    • 2024
  • Let ℜ be a *-algebra with unity I and a nontrivial projection P1. In this paper, we show that under certain restrictions if a map ψ : ℜ → ℜ satisfies $$\Psi(S_1{\diamond}S_2{\cdot}{\cdot}{\cdot}{\diamond}S_{n-1}{\bullet}S_n)=\sum_{k=1}^nS_1{\diamond}S_2{\diamond}{\cdot}{\cdot}{\cdot}{\diamond}S_{k-1}{\diamond}{\Psi}(S_k){\diamond}S_{k+1}{\diamond}{\cdot}{\cdot}{\cdot}{\diamond}S_{n-1}{\bullet}S_n$$ for all Sn-2, Sn-1, Sn ∈ ℜ and Si = I for all i ∈ {1, 2, . . . , n - 3}, where n ≥ 3, then ψ is an additive *-derivation.

ADHESION STRENGTH OF DIAMOND COATED WC-Co TOOLS USING MICROWAVE PLASMA CVD

  • Kiyama, Nobumichi;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.540-544
    • /
    • 1996
  • To apply the CVD diamond film to coated tools, it is necessary to make adhesion strength between diamond film and substrate stronger. So adhesion strength of diamond coated WC-Co tools using Microwave Plasma CVD and cutting test of Al-18mass%Si alloy using diamond cutting tools were studied. Diamond coating was carried out using Microwave Plasma CVD apparatus. Reaction gas was used mixture of methane and hydrogen. Substrate temperature were varied from 673K to 1173K by control of microwave output power and reaction pressure. By observation of SEM, grain size became larger and larger as substrate temperature became higher and higher. Also all deposits were covered with clear diamond crystals. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, the deposit synthesized at lower substrate temperature (673K) showed higher quality than deposit synthesized at higher substrate temperature (1173K). As a result of scratch adhesion strength test, from 873K to 1173K adhesion strength decreased by rising of substrate temperature. The deposit synthesized at 873K showed best adhesion strength. In the cutting test of Al-18mass%Si alloy using diamond coated tools and the surface machinability of Al-Si works turned with diamond coating tools which synthesized at 873K presented uniform roughness. Cutting performance of Al-18mass%Si alloys using diamond coated WC-Co tools related to the adhesion strength.

  • PDF

Effect of Toughness Index of Diamond Abrasives on Cutting Performance in Wire Sawing Process (와이어쏘 공정에서 다이아몬드 입자의 인성지수가 절단 성능에 미치는 영향)

  • Kim, Do-Yeon;Lee, Tae-Kyung;Kim, Hyoung-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.675-682
    • /
    • 2020
  • Multi-wire sawing is the prominent technology employed to cut hard material ingots into wafers. This paper aimed to research the effect of diamond toughness index on the cutting performance of electroplated diamond wire. Three different toughness index of diamond abrasives were used to manufacture electroplated diamond wires. The cutting performance of electroplated diamond wire is verified through experiments, in which sapphire ingot are cut using single wire sawing machine. A single wire saw for constant load slicing is developed for the cutting performance evaluation of electroplated diamond wire. Choosing the cutting depth, total cutting depth, cutting force and wear of electroplated diamond wires as evaluation parameters, the performance of electroplated diamond wire is evaluated. The results of this study showed that there was a significant direct relationship between the toughness index of diamond abrasives and the cutting performance. Results demonstrated that diamond abrasive with a high toughness index showed higher cutting performance. However, all diamond abrasives showed similar cutting performance under low load conditions. The results of this paper are useful for the development of cutting large diameter ingots and cutting high hardness ingots at high speed.