• Title/Summary/Keyword: diagonal sum

Search Result 23, Processing Time 0.021 seconds

Evaluation of validity of three dimensional dental digital model made from blue LED dental scanner (Blue LED 방식의 스캐너로 제작된 치과용 3차원 디지털 모형의 정확도 평가)

  • Kim, Jae-Hong;Jung, Jae-Kwan;Kim, Ki-Baek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3007-3013
    • /
    • 2014
  • The objectives of this study was to evaluate the validity of 3D digital models made from blue LED dental scanner. Twenty same cases of stone models and 3d digital models were manufactured for this study. Intercanine distance, intermolar distance, two dental arch lengths(right, left) and two diagonal of dental arch lengths(right, left) were measured for evaluation of validity. The nonparametric Wilcoxon rank sum test was used for statistical analysis (${\alpha}$=0.05). Although stone models showed larger than digital models in all measured distances(p<0.05), none exceeded the clinically acceptable range.

A Scalable Resource-Lookup Protocol for Internet File System Considering the Computing Power of a Peer (피어의 컴퓨팅 능력을 고려한 인터넷 파일 시스템을 위한 확장성 있는 자원 탐색 프로토콜 설계)

  • Jung Il-dong;You Young-ho;Lee Jong-hwan;Kim Kyongsok
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.89-99
    • /
    • 2005
  • Advances of Internet and rC accelerate distribution and sharing of information, which make P2P(Peer-to-Peer) computing paradigm appear P2P computing Paradigm is the computing paradigm that shares computing resources and services between users directly. A fundamental problem that confronts Peer-to-Peer applications is the efficient location of the node that stoles a desired item. P2P systems treat the majority of their components as equivalent. This purist philosophy is useful from an academic standpoint, since it simplifies algorithmic analysis. In reality, however, some peers are more equal than others. We propose the P2P protocol considering differences of capabilities of computers, which is ignored in previous researches. And we examine the possibility and applications of the protocol. Simulating the Magic Square, we estimate the performances of the protocol with the number of hop and network round time. Finally, we analyze the performance of the protocol with the numerical formula. We call our p2p protocol the Magic Square. Although the numbers that magic square contains have no meaning, the sum of the numbers in magic square is same in each row, column, and main diagonal. The design goals of our p2p protocol are similar query response time and query path length between request peer and response peer, although the network information stored in each peer is not important.

An Exact Division Algorithm for Change-Making Problem (거스름돈 만들기 문제의 정확한 나눗셈 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2022
  • This paper proposed a division algorithm of performance complexity $O{\frac{n(n+1)}{2}}$ for a change-making problem(CMP) in which polynomial time algorithms are not known as NP-hard problem. CMP seeks to minimize the sum of the xj number of coins exchanged when a given amount of money C is exchanged for cj,j=1,2,⋯,n coins. Known polynomial algorithms for CMPs are greedy algorithms(GA), divide-and-conquer (DC), and dynamic programming(DP). The optimal solution can be obtained by DP of O(nC), and in general, when given C>2n, the performance complexity tends to increase exponentially, so it cannot be called a polynomial algorithm. This paper proposes a simple algorithm that calculates quotient by dividing upper triangular matrices and main diagonal for k×n matrices in which only j columns are placed in descending order of cj of n for cj ≤ C and i rows are placed k excluding all the dividers in cj. The application of the proposed algorithm to 39 benchmarking experimental data of various types showed that the optimal solution could be obtained quickly and accurately with only a calculator.