• Title/Summary/Keyword: diagonal shear crack

Search Result 71, Processing Time 0.022 seconds

The Shear Resistance of Rc Deep Beam with Web Opening Repaired and Reinforced by Fiber Sheets After Shear Failure (깊이가 큰 철근콘크리트 유공보의 보수·보강 전후의 내력에 관한 연구)

  • Yang, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.149-158
    • /
    • 2004
  • In this study, deep beam specimens are designed to have the effective shear span to depth ratio 1.0 and web opening within effective shear region. The purpose of this study is to investigate experimentally the shear strengthening effect between before failure and after failure upon using fiber sheets for RC deep beam with opening in web. The results can be summarized as follows; 1)When deep beams with web opening were failed in shear, their initial diagonal crack load and crack width were not influenced by their types of the arranged steel bars. 2)Deep beam with the horizontal reinforced bar was effective in the ultimate load of deep beam with web opening in shear failure 3)There were the approximate values between the experimental values and the analysis of finite element method. 4)The ultimate failure strengths of the repaired and strengthened specimens were increased about 34.4%~83.8% in comparison with specimens not to be strengthened.

Shear performance assessment of steel fiber reinforced-prestressed concrete members

  • Hwang, Jin-Ha;Lee, Deuck Hang;Park, Min Kook;Choi, Seung-Ho;Kim, Kang Su;Pan, Zuanfeng
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.825-846
    • /
    • 2015
  • In this study, shear tests on steel fiber reinforced-prestressed concrete (SFR-PSC) members were conducted with test parameters of the concrete compressive strength, the volume fraction of steel fibers, and the level of effective prestress. The SFR-PSC members showed higher shear strengths and stiffness after diagonal cracking compared to the conventional prestressed concrete (PSC) members without steel fibers. In addition, their shear deformational behavior was measured using the image-based non-contact displacement measurement system, which was then compared to the results of nonlinear finite element analyses (NLFEA). In the NLFEA proposed in this study, a bi-axial tensile behavior model, which can reflect the tensile behavior of the steel fiber-reinforced concrete (SFRC) in a simple manner, was introduced into the smeared crack truss model. The NLFEA model proposed in this study provided a good estimation of shear behavior of the SFRPSC members, such as the stiffness, strengths, and failure modes, reflecting the effect of the key influential factors.

Seismic behavior of interior RC beam-column joints with additional bars under cyclic loading

  • Lu, Xilin;Urukap, Tonny H.;Li, Sen;Lin, Fangshu
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.37-57
    • /
    • 2012
  • The behavior of beam-column joints in moment resisting frame structures is susceptible to damage caused by seismic effects due to poor performance of the joints. A good number of researches were carried out to understand the complex mechanism of RC joints considered in current seismic design codes. The traditional construction detailing of transverse reinforcement has resulted in serious joint failures during earthquakes. This paper introduces a new design philosophy involving the use of additional diagonal bars within the joint particularly suitable for low to medium seismic effects in earthquake zones. In this study, ten full-scale interior beam-column specimens were constructed with various additional reinforcement details and configurations. The results of the experiment showed that adding additional bars is a promising approach in reinforced concrete structures where earthquakes are eminent. In terms of overall cracking observation during the test, the specimens with additional bars (diagonal and straight) compared with the ones without them showed fewer cracks in the column. Furthermore, concrete confinement is certainly an important design measure as recommended by most international codes.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

A Study on Shear Behavior of High Strength Reinforced Concrete Beams (고강도 철근콘크리트 보의 전단거동에 관한 연구)

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.68-79
    • /
    • 1998
  • In the years, the concern about high-strength concrete which is new material has been heightened as a result of active research and development. Recently, as the building structure has been being bigger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. The demand of high -strength concrete is expected to increase with expansion of usage about the complex concrete structures such as bridge structure as well as nuclear plants, underground structures, hydraulic structures and arctic area sturctures. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. Water/binder ration was limited no more than 18 percent and the amount of unit cement was increased. In this study, a number of trial in concrete mix was carried out to get optimal mix design, and the target slump with $10{\pm}2cm$ was set for in-situ construction. High-strength concrete with cylinder strength of 1,200kgf/$cm^2$ in the 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained form the static test. The test results were compared with the shear strengths predicted by the equations of ACI code 318-89 and orther researchers. Based on the test results, shear strength equation of reinforced concrete beam using high strength concrete was proposed. Form an evaluation of the results of this experimental investigation, it was concluded that shear strength after diagonal tention cracking diminished with the increase in compressive strength for beams.

  • PDF

A Study on Truss Model Incorporated with Internal Force State Factor for Shear Failure Mechanism in slender RC Beam (내력상태계수 개념을 도입한 철근콘크리트 보의 전단파괴 트러스모델에 관한 연구)

  • Cheong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.609-614
    • /
    • 2001
  • This paper is to explain reasonable shear behavior that can apply usually to reinforced concrete beams on the basic concepts of existent analysis and experimental research information. This study is succession $paper^{2) 3) 4) 5)}$ of treatise announced in existing and main control variable of reinforced concrete beams with stirrups used internal force state factor($\alpha$). Shear failure of reinforced concrete beams with stirrups is Influenced greatly because of the actual geometrical shape(a/d) of the concrete and flexural reinforcement steel ratio, stirrup reinforcement ratio and concrete compression strength, size effect etc. Therefore, shear behavior of reinforced concrete beams with stirrups that flexural crack is happened can be explained easily through proper extent proposal of internal force state factor($\alpha$) that express internal force state flowing. Use existent variable truss model by analysis model to explain arch action. Also, wish to compose each failure factors and correlation with internal force state factor by function, and when diagonal cracks happens, internal force state factor($\alpha$) study whether shear stress and some effect are.

  • PDF

Seismic detailing of reinforced concrete beam-column connections

  • Kim, Jang Hoon;Mander, John B.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.589-601
    • /
    • 2000
  • A simplified analysis procedure utilizing the strut-tie modeling technique is developed to take a close look into the post-elastic deformation capacity of beam-column connections in ductile reinforced concrete frame structures. Particular emphasis is given to the effect of concrete strength decay and quantity and arrangement of joint shear steel. For this a fan-shaped crack pattern is postulated through the joints. A series of hypothetical rigid nodes are assumed through which struts, ties and boundaries are connected to each other. The equilibrium consideration enables all forces in struts, ties and boundaries to be related through the nodes. The boundary condition surrounding the joints is obtained by the mechanism analysis of the frame structures. In order to avoid a complexity from the indeterminacy of the truss model, it is assumed that all shear steel yielded. It is noted from the previous research that the capacity of struts is limited by the principal tensile strain of the joint panel for which the strain of the transverse diagonal is taken. The post-yield deformation of joint steel is taken to be the only source of the joint shear deformation beyond the elastic range. Both deformations are related by the energy consideration. The analysis is then performed by iteration for a given shear strain. The analysis results indicate that concentrating most of the joint steel near the center of the joint along with higher strength concrete may enhance the post-elastic joint performance.

Behaviour of Beams Without Transverse Reinforcement (전단보강근이 없는 보의 거동)

  • Cho, Soon-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.173-181
    • /
    • 1999
  • To deepen the understanding of shear behaviour in beams without transverse reinforcement, the relative importance of five contributing factors to concrete shear resistance($v_c$), which are i)flexural compression zone, ii)friction at crack faces, iii)dowel action, iv)arch action and recently identified, v)residual tensile stresses across cracks, was explained physically using two analytical methods based on the truss concept. One is called "Modified Compression Field Theory(MCFT)" considering ii) and v) explicitly, and the other "Crack Friction Truss Model(CFTM)" more dominantly ii) in determining concrete resistance. To verify their effectiveness, the predictions using MCFT and CFTM were also made for twenty KAIST beam tests($f'_c$=53.7Mpa), designated more likely to the development of the size effect law based on the fracture mechanics concept. Experimental findings with varying of a/d, longitudinal reinforcement ratios, and obtained from MCFT enabled additional explanations for some phenomena which were difficult to measure in tests. However, MCFT seemed somewhat conservative for beams with higher longitudinal reinforcement, while somewhat unsafe for beams with larger depths. More tests are necessary leading to firm conclusions in these areas.

An Experimental Study on the Shear Behavior of RC Beams Strengthened with Near Surface Mounted and Externally Bonded CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 철근콘크리트 부재의 전단 거동에 관한 실험적연구)

  • Lim, Dong-Hwan;Kwon, Yeong-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study is to investigate the shear strengthening effectiveness of the beams strengthened with near surface mounted (NSM) and external bonded (EB) CFRP strips. A total of nine concrete beams were made and tested. From this study, it was found that the shear stiffness and strength of the beams strengthened with NSM and EB strips were significantly improved compared to the control beam. Failure of the beam strengthened with NSM and EB strips was initiated by shear cracks, propagated diagonally to the adjacent epoxy grooves without crossing the epoxy and finally sudden diagonal crack connecting the point of application of load and flexural crack was occurred. For the beam strengthened combined with NSM and EB CFRP strips, the tensile strains in the NSM CFRP strips were observed in the range of 0.35% to 0.45% and strains with EB strips were measured about 0.3%.

Analysis of Shear Damage Accumulation of Reinforced Concrete Beams under Fatigue Loads (피로하중을 받는 철근콘크리트 보의 전단손상누적 및 해석기법연구)

  • 한승환;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.107-115
    • /
    • 1998
  • 반복하중을 받는 무근 및 철근 콘크리트 부재는 하중의 반복작용에 의해 과도한 균열 및 처짐을 유발하고 결과적으로 전체 구조요소의 파괴를 일으킨다. 따라서 하중반복에 의한 누적손상의 진행과정을 정량적으로 평가하여 철근콘크리트 보의 사용성과 안전성을 평가하는 것이 중요하고 특히 취성적 거동 특성을 갖는 전단거동의 경우에 더욱 의미가 있다. 본 연구에서는 반복전단하중에 의한 누적손상의 정량적 분석을 위하여 평균변형도 및 평균응력개념에 기초한 수정압축장이론(modified compression field theory)에 의하여 누적손상 모델을 제안하였다. 본 연구에서 제안된 모델을 통하여 반복전단하중에 의한 처짐과 변형도의 변화를 평가하는데 유용하게 이용될 것으로 사료된다.