• Title/Summary/Keyword: diagnosis model

Search Result 1,750, Processing Time 0.028 seconds

Development and Evaluation of Ontology for Diagnosis in Oriental Medicine (한의진단 Ontology 구축과 평가)

  • Shin Sang-Woo;Jung Gil-San;Park Kyung-Mo;Kim Seon-Ho;Park Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.202-208
    • /
    • 2006
  • The goal of this study is to develop knowledge representation method for the construction and evaluation of ontology for diagnosis in oriental medicine. To develop the expert system for decision making on diagnosis and treatment, the systematic and structural knowledge which can be processible in EMR(Electronic Medical Record) must be precedent, and the Computational Process which control the system as well. This study set up an ontology as a trial model to represent the oriental medical knowledge into the machine processible one. Protege 2.1 has been used to build the ontology, and the serialization format of our ontology is the XML document based on OWL. The components of oriental medical diagnosis was arranged with the combination of symptoms which belong to the certain symptom patterns. Then natural language which expresses the oriental medical diagnosis components were converted into the logical sentence, and individual characteristic symptoms into each values of specific properties. In addition to the study, the diagnosis software for oriental medicine was developed and it used the ontology which we developed. Sequently, we tested the software to confirm the appropriateness of ontology. The result of the test shows that diagnostic questions are automatically formulated according to the diagnosis components of this ontology and that as such diagnostic results are induced. Therefore, the ontology system in this study will be efficient to develop the diagnosis program and useful as a tool for doctors to make decision. But, it is not recommendable to apply the system to the clinical environment until the clear diagnosis standards are introduced, and the more reliable diagnosis program can be developed based on the more appropriate ontology mentioned above.

Improving the Accuracy of Early Diagnosis of Thyroid Nodule Type Based on the SCAD Method

  • Shahraki, Hadi Raeisi;Pourahmad, Saeedeh;Paydar, Shahram;Azad, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1861-1864
    • /
    • 2016
  • Although early diagnosis of thyroid nodule type is very important, the diagnostic accuracy of standard tests is a challenging issue. We here aimed to find an optimal combination of factors to improve diagnostic accuracy for distinguishing malignant from benign thyroid nodules before surgery. In a prospective study from 2008 to 2012, 345 patients referred for thyroidectomy were enrolled. The sample size was split into a training set and testing set as a ratio of 7:3. The former was used for estimation and variable selection and obtaining a linear combination of factors. We utilized smoothly clipped absolute deviation (SCAD) logistic regression to achieve the sparse optimal combination of factors. To evaluate the performance of the estimated model in the testing set, a receiver operating characteristic (ROC) curve was utilized. The mean age of the examined patients (66 male and 279 female) was $40.9{\pm}13.4years$ (range 15- 90 years). Some 54.8% of the patients (24.3% male and 75.7% female) had benign and 45.2% (14% male and 86% female) malignant thyroid nodules. In addition to maximum diameters of nodules and lobes, their volumes were considered as related factors for malignancy prediction (a total of 16 factors). However, the SCAD method estimated the coefficients of 8 factors to be zero and eliminated them from the model. Hence a sparse model which combined the effects of 8 factors to distinguish malignant from benign thyroid nodules was generated. An optimal cut off point of the ROC curve for our estimated model was obtained (p=0.44) and the area under the curve (AUC) was equal to 77% (95% CI: 68%-85%). Sensitivity, specificity, positive predictive value and negative predictive values for this model were 70%, 72%, 71% and 76%, respectively. An increase of 10 percent and a greater accuracy rate in early diagnosis of thyroid nodule type by statistical methods (SCAD and ANN methods) compared with the results of FNA testing revealed that the statistical modeling methods are helpful in disease diagnosis. In addition, the factor ranking offered by these methods is valuable in the clinical context.

Accuracy of one-step automated orthodontic diagnosis model using a convolutional neural network and lateral cephalogram images with different qualities obtained from nationwide multi-hospitals

  • Yim, Sunjin;Kim, Sungchul;Kim, Inhwan;Park, Jae-Woo;Cho, Jin-Hyoung;Hong, Mihee;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Kim, Young Ho;Lim, Sung-Hoon;Sung, Sang Jin;Kim, Namkug;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.3-19
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the accuracy of one-step automated orthodontic diagnosis of skeletodental discrepancies using a convolutional neural network (CNN) and lateral cephalogram images with different qualities from nationwide multi-hospitals. Methods: Among 2,174 lateral cephalograms, 1,993 cephalograms from two hospitals were used for training and internal test sets and 181 cephalograms from eight other hospitals were used for an external test set. They were divided into three classification groups according to anteroposterior skeletal discrepancies (Class I, II, and III), vertical skeletal discrepancies (normodivergent, hypodivergent, and hyperdivergent patterns), and vertical dental discrepancies (normal overbite, deep bite, and open bite) as a gold standard. Pre-trained DenseNet-169 was used as a CNN classifier model. Diagnostic performance was evaluated by receiver operating characteristic (ROC) analysis, t-stochastic neighbor embedding (t-SNE), and gradient-weighted class activation mapping (Grad-CAM). Results: In the ROC analysis, the mean area under the curve and the mean accuracy of all classifications were high with both internal and external test sets (all, > 0.89 and > 0.80). In the t-SNE analysis, our model succeeded in creating good separation between three classification groups. Grad-CAM figures showed differences in the location and size of the focus areas between three classification groups in each diagnosis. Conclusions: Since the accuracy of our model was validated with both internal and external test sets, it shows the possible usefulness of a one-step automated orthodontic diagnosis tool using a CNN model. However, it still needs technical improvement in terms of classifying vertical dental discrepancies.

Development of a Prediction Model for Fall Patients in the Main Diagnostic S Code Using Artificial Intelligence (인공지능을 이용한 주진단 S코드의 낙상환자 예측모델 개발)

  • Ye-Ji Park;Eun-Mee Choi;So-Hyeon Bang;Jin-Hyoung Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.526-532
    • /
    • 2023
  • Falls are fatal accidents that occur more than 420,000 times a year worldwide. Therefore, to study patients with falls, we found the association between extrinsic injury codes and principal diagnosis S-codes of patients with falls, and developed a prediction model to predict extrinsic injury codes based on the data of principal diagnosis S-codes of patients with falls. In this study, we received two years of data from 2020 and 2021 from Institution A, located in Gangneung City, Gangwon Special Self-Governing Province, and extracted only the data from W00 to W19 of the extrinsic injury codes related to falls, and developed a prediction model using W01, W10, W13, and W18 of the extrinsic injury codes of falls, which had enough principal diagnosis S-codes to develop a prediction model. 80% of the data were categorized as training data and 20% as testing data. The model was developed using MLP (Multi-Layer Perceptron) with 6 variables (gender, age, principal diagnosis S-code, surgery, hospitalization, and alcohol consumption) in the input layer, 2 hidden layers with 64 nodes, and an output layer with 4 nodes for W01, W10, W13, and W18 exogenous damage codes using the softmax activation function. As a result of the training, the first training had an accuracy of 31.2%, but the 30th training had an accuracy of 87.5%, which confirmed the association between the fall extrinsic code and the main diagnosis S code of the fall patient.

Design of Knowledge Model of Nursing Diagnosis based on Ontology (온톨로지에 기반한 간호진단 지식모델의 설계)

  • Lee, In-Keun;Kim, Hwa-Sun;Lee, Sung-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.468-475
    • /
    • 2012
  • Nurses have performed their nursing practice according to the standard guidelines such as NANDA, NIC, and NOC, and recorded the information on nursing process into EMR system. In particular, NANDA, nursing diagnosis taxonomy, has difficulty expressing nursing diagnosis in detail because it represents abstract concepts of nursing diagnosis. So, the hospitals in KOREA have developed and used the list of nursing diagnosis on their own without referring the international standard terminologies, and it caused the delay of computerization of nursing records. Therefore, we proposed a ontology development methodology on nursing diagnosis based on NANDA and SNOMED-CT. The developed ontology, systematically developed with the frequently used nursing diagnosis terminologies in each hospital, based on the proposed methodology enables knowledge expansion and interoperable exchange of nursing records between EMR systems. We developed an ontology using the 112 nursing diagnosis terms defined by extracting and refining information on nursing diagnosis recorded in Kyungpook National University Hospital. We also confirmed the content validity and the usefulness of the developed ontology through expert assessment and experiment.

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

A Case Study on Diagnosis and Checking for Machine-Tools with an OAC (개방형 컨트롤러를 갖는 공작기계에 적합한 진단 및 신호점검사례)

  • 김동훈;송준엽;김경돈;김찬봉;김선호;고광식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.292-297
    • /
    • 2004
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) which is independent of the CNC vendor. The OAC and machine tools with OAC led the convenient environment where it is possible to implement user-defined application programs efficiently within CNC. Tis paper proposes a method of operational fault cause diagnosis which is based on the status of programmable logic controller (PLC) in machine tools with OAC. The operational fault is defined as a disability state occurring during normal operation of machine tools. The faults are occupied by over 70% of all faults and are also unpredictable as most of them occur without any warning. Two diagnosis models, the switching function (SF) and the step switching function (SSF), are propose in order to diagnose the fault cause quickly and exactly. The cause of an occurring fault is logically diagnosed through a fault diagnosis system (FDS) using the diagnosis models. A suitable interface environment between CNC and develope application modules is constructed in order to implement the diagnostic functions in the CNC domain. The diagnosed results were displayed on a CNC monitor for machine operators and provided to a remote site through a web browser. The result of his research could be a model of the fault cause diagnosis and the remote monitoring for machine tools with OAC.

  • PDF

Multi-stage structural damage diagnosis method based on "energy-damage" theory

  • Yi, Ting-Hua;Li, Hong-Nan;Sun, Hong-Min
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.345-361
    • /
    • 2013
  • Locating and assessing the severity of damage in large or complex structures is one of the most challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) has the ability to clearly reflect the damage characteristics of structural response signals and the artificial neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by using the WPT and ANN based on "energy-damage" theory, in which, the wavelet packet component energies are first extracted to be damage sensitive feature and then adopted as input into an improved back propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate that the method herein is computationally efficient and is able to detect the existence of different damage patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in the loss of stiffness on braces or the removal bracing in various combinations.

The discrimination model for the pattern identification diagnosis of the stroke (중풍의 변증 진단을 위한 판별모형)

  • Kang, Byeong-Kab;Kang, Kyung-Won;Park, Sae-Wook;Kim, Bo-Young;Kim, Jeong-Chul;Go, Mi-Mi;Seol, In-Chan;Jo, Hyun-Kyung;Lee, In;Choi, Sun-Mi
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.59-63
    • /
    • 2007
  • The purpose of this study was to diagnosis that what patterns identification using the statistical method. Discriminant analysis using the medical specialist and resident pattern identification agree case in stroke patients within 1 month of onset. The agreement rate of dificiency of Gi(75%), heat-transformation(74%), dampphlegm syndrome(69%), deficiency of Eum(51%) and syndrome of blood stagnation(43%) are respectively 0.75, 0.74, 0.69, 0.51 and 0.43 in medical specialist and using linear discriminant function pattern identification are same. The study of inspection, pulse feeling and palpitation will be continued to evaluate concordance rate. Discrimination model will be make to get higher Accuracy and prediction, it means becomes the help in pattern identification diagnosis objectivity and scientific.

  • PDF

Development of 68Ga-human serum albumin as a PET imaging agent for diagnosis of acute inflammation

  • Lee, Ji Youn;Kim, Hoyoung;Lee, Boeun;Kim, Young Ju;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.104-108
    • /
    • 2015
  • Human serum albumin (HSA) has potential for diagnosis and therapy in clinical setting. The purpose of experiments was to develop and evaluate $^{68}Ga$-HSA as a PET agent for diagnosis of acute inflammation. NOTA-HSA was synthesized by conjugating 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid to HSA in 0.1 M sodium carbonate buffer (pH 9.5) and then purified using a PD-10 size-exclusion column. NOTA-HSA was labeled with $^{68}Ga$ at room temperature for 10 min, and 8.4% sodium hydrogen carbonate buffer was added for neutralization. $^{68}Ga$-NOTA-HSA was purified using alumina N plus light cartridge and $0.22{\mu}m$ syringe filter. Labeling efficiency and radiochemical purity were determined by ITLC-SG with 0.1 M citric acid. Biodistribution study was performed in a male BALB/c mice model of Carrageenan-induced acute inflammation. Animal PET study was performed in acute inflammation mice model after tail vein injection of $^{68}Ga$-HSA. This radiotracer showed high labeling efficiency (>99%) around pH 7. Biodistribution study showed higher inflamed footpad uptake than control footpad uptake. Animal PET study revealed 2 times higher uptake on inflamed footpad compared to control footpad. In these experiments, we developed $^{68}Ga$-HSA for acute inflammation PET imaging and evaluated it in a mouse disease model. The results demonstrated that $^{68}Ga$-HSA has potential as a PET imaging agent for diagnosis of acute inflammation.