Purpose: This study aimed to identify the risk factors for diabetic foot ulceration (DFU) to develop and evaluate the performance of a DFU prediction model and nomogram among people with diabetes mellitus (DM). Methods: This unmatched case-control study was conducted with 379 adult patients (118 patients with DM and 261 controls) from four general hospitals in South Korea. Data were collected through a structured questionnaire, foot examination, and review of patients' electronic health records. Multiple logistic regression analysis was performed to build the DFU prediction model and nomogram. Further, their performance was analyzed using the Lemeshow-Hosmer test, concordance statistic (C-statistic), and sensitivity/specificity analyses in training and test samples. Results: The prediction model was based on risk factors including previous foot ulcer or amputation, peripheral vascular disease, peripheral neuropathy, current smoking, and chronic kidney disease. The calibration of the DFU nomogram was appropriate (χ2 = 5.85, p = .321). The C-statistic of the DFU nomogram was .95 (95% confidence interval .93~.97) for both the training and test samples. For clinical usefulness, the sensitivity and specificity obtained were 88.5% and 85.7%, respectively at 110 points in the training sample. The performance of the nomogram was better in male patients or those having DM for more than 10 years. Conclusion: The nomogram of the DFU prediction model shows good performance, and is thereby recommended for monitoring the risk of DFU and preventing the occurrence of DFU in people with DM.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.19-30
/
2021
Diabetes Mellitus (DM) is one of common chronic diseases leading to severe health complications that may cause death. The disease influences individuals, community, and the government due to the continuous monitoring, lifelong commitment, and the cost of treatment. The World Health Organization (WHO) considers Saudi Arabia as one of the top 10 countries in diabetes prevalence across the world. Since most of the medical services are provided by the government, the cost of the treatment in terms of hospitals and clinical visits and lab tests represents a real burden due to the large scale of the disease. The ability to predict the diabetic status of a patient without the laboratory tests by performing screening based on some personal features can lessen the health and economic burden caused by diabetes alone. The goal of this paper is to investigate the prediction of diabetic and prediabetic patients by considering factors other than the laboratory tests, as required by physicians in general. With the data obtained from local hospitals, medical records were processed to obtain a dataset that classified patients into three classes: diabetic, prediabetic, and non-diabetic. After applying three machine learning algorithms, we established good performance for accuracy, precision, and recall of the models on the dataset. Further analysis was performed on the data to identify important non-laboratory variables related to the patients for diabetes classification. The importance of five variables (gender, physical activity level, hypertension, BMI, and age) from the person's basic health data were investigated to find their contribution to the state of a patient being diabetic, prediabetic or normal. Our analysis presented great agreement with the risk factors of diabetes and prediabetes stated by the American Diabetes Association (ADA) and other health institutions worldwide. We conclude that by performing class-specific analysis of the disease, important factors specific to Saudi population can be identified, whose management can result in controlling the disease. We also provide some recommendations learnt from this research.
Diabetes mellitus can cause devastating complications, which often result in disability and death, and diabetic nephropathy is a leading cause of death in people with diabetes. In this study, we tried to predict the onset of diabetic nephropathy from an irregular and unbalanced diabetic dataset. We collected clinical data from 292 patients with type 2 diabetes and performed preprocessing to extract 184 features to resolve the irregularity of the dataset. We compared several feature selection methods, such as ReliefF and sensitivity analysis, to remove redundant features and improve the classification performance. We also compared learning methods with support vector machine, such as equal cost learning and cost-sensitive learning to tackle the unbalanced problem in the dataset. The best classifier with the 39 selected features gave 0.969 of the area under the curve by receiver operation characteristics analysis, which represents that our method can predict diabetic nephropathy with high generalization performance from an irregular and unbalanced dataset, and physicians can benefit from it for predicting diabetic nephropathy.
The discovery of biomarkers related to pattern identification (PI), the core diagnostic theory of Korean medicine (KM), is one of the methods that can provide objective and reliable evidence by applying PI to clinical practice. In this study, 40 diabetic patients and 41 healthy control subjects recruited from the Korean medicine clinic were examined to determine the human electrical response related to the deficiency pattern, a representative pattern of diabetes. Qi-Blood-Yin-Yang deficiency pattern scores, which are representative deficiency patterns for diabetes mellitus, were obtained through a questionnaire with verified reliability and validity, and the human electrical response was measured non-invasively using a bioimpedance meter. In ANCOVA analysis using gender as a covariate, the 5 kHz frequency resistance and 5-250 kHz frequency reactance were significantly lower in the diabetic group than in non-diabetic control group. In addition, the multiple regression analysis showed a positive correlation (R2=0.11~0.19) between the Yang deficiency pattern score and resistance value for the diabetic group; the correlation was higher at higher frequencies of 50kHz (R2=0.18) and 250kHz (R2=0.19) compared to 5kHz(R2=0.11). In contrast, there was no such significant association in the control group. It implies that bioimpedance resistance measured at finite frequencies may be useful in predicting Yang deficiency, which is closely related to diabetic complications by reflecting the decrease in body water content and metabolism. In the future, large-scale planned clinical studies will be needed to identify biomarkers associated with different types of PI in diabetes.
The purpose of this study is to predict the effects of macroscopic and integrative therapies by finding active ingredients, potential targets of Astragalus membranaceus (Am) and Cornus officinalis (Co) for diabetic nephropathy. We have constructed network pharmacology-based systematic and network methodology by system biology, chemical structure, chemogenomics. We found several active ingredients of Astragalus membranaceus (Am) and Cornus officinalis (Co) that were speculated to bind to specific receptors which had been known to have a role in the progression of diabetic nephropathy. Four components of Am and eleven components of Co could bind to iNOS; two ingredients of Am and six ingredients of Co could docking to cGB-PDE; one component of Am and nine components of Co could bind to ACE; three ingredients of Co with neprilysin; three components of Co with ET-1 receptor; four ingredients of Am and fourteen ingredients of Co with mineralocorticoid receptor; one component of Am and seven components of Co with interstitial collagenase; one ingredient of Am and ten ingredients of Co with membrane primary amine oxidase; one component of Am and four components of Co with JAK2; two ingredients of Am and one ingredient of Co with MAPK 12; one component of Am and five components of Co could docking to TGF-beta receptor type-1. From this work we could speculate that the possible mechanisms of Am and Co for diabetic nephropathy are anti-inflammatory, antioxidant and antihypertensive effects.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.2904-2926
/
2022
Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.
International Journal of Computer Science & Network Security
/
제23권12호
/
pp.204-212
/
2023
Diabetes is a condition that can be brought on by a variety of different factors, some of which include, but are not limited to, the following: age, a lack of physical activity, a sedentary lifestyle, a family history of diabetes, high blood pressure, depression and stress, inappropriate eating habits, and so on. Diabetes is a disorder that can be brought on by a number of different factors. A chronic disorder that may lead to a wide range of complications. Diabetes mellitus is synonymous with diabetes. There is a correlation between diabetes and an increased chance of having a variety of various ailments, some of which include, but are not limited to, cardiovascular disease, nerve damage, and eye difficulties. There are a number of illnesses that are connected to kidney dysfunction, including stroke. According to the figures provided by the International Diabetes Federation, there are more than 382 million people all over the world who are afflicted with diabetes. This number will have risen during the years in order to reach 592 million by the year 2035. There are a substantial number of people who become victims on a regular basis, and a significant percentage of those people are uninformed of whether or not they have it. The individuals who are most adversely impacted by it are those who are between the ages of 25 and 74 years old. This paper reviews about various machine learning techniques used to detect diabetes mellitus.
Objectives : GunRyeong-Tang(GRT) is a traditional herbal prescription that combines Oryeongsan and Sagunja-tang. This study employed network analysis methods on the components of GRT and target genes related to diabetes complications to predict the improvement effects of GRT on diabetes complications. Methods : The collection of active compounds of GRT and related target genes involved the utilization of public databases and the PubChem database. We selected diabetes complication-related genes using GeneCards and confirmed their correlation through comparative analysis with the target genes of GRT. We constructed a network using Cytoscape 3.9.1 and conducted topological analysis. To predict the mechanism, we performed functional enrichment analysis based on Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results : Through network analysis, 234 active compounds and 1361 related genes were collected from GRT. A total of 9,136 genes related to diabetes complications were collected, and 1,039 target genes overlapping with the components of GRT were identified. The core genes of this network were TP53, INS, AKT1, ALB, and EGFR. In addition, GRT significantly reduced the H9c2 cell size and the expression of myocardial hypertrophy biomarkers (ANP, BNP), which were increased by high glucose (HG). Conclusions : Through this study, we were able to predict the activity and mechanism of action of GRT on diabetes and diabetic complications, and confirmed the potential of GRT as a treatment for diabetes complications through the effect of GRT on improving myocardial hypertrophy for diabetic cardiomyopathy.
Koo, Bo Kyung;Oh, Sohee;Kim, Yoon Ji;Moon, Min Kyong
지질동맥경화학회지
/
제7권2호
/
pp.110-121
/
2018
Objective: We developed a new equation for predicting coronary heart disease (CHD) risk in Korean diabetic patients using a hospital-based cohort and compared it with a UK Prospective Diabetes Study (UKPDS) risk engine. Methods: By considering patients with type 2 diabetes aged ${\geq}30years$ visiting the diabetic center in Boramae hospital in 2006, we developed a multivariable equation for predicting CHD events using the Cox proportional hazard model. Those with CHD were excluded. The predictability of CHD events over 6 years was evaluated using area under the receiver operating characteristic (AUROC) curves, which were compared using the DeLong test. Results: A total of 732 participants (304 males and 428 females; mean age, $60{\pm}10years$; mean duration of diabetes, $10{\pm}7years$) were followed up for 76 months (range, 1-99 month). During the study period, 48 patients (6.6%) experienced CHD events. The AUROC of the proposed equation for predicting 6-year CHD events was 0.721 (95% confidence interval [CI], 0.641-0.800), which is significantly larger than that of the UKPDS risk engine (0.578; 95% CI, 0.482-0.675; p from DeLong test=0.001). Among the subjects with <5% of risk based on the proposed equation, 30.6% (121 out of 396) were classified as ${\geq}10%$ of risk based on the UKPDS risk engine, and their event rate was only 3.3% over 6 years. Conclusion: The UKPDS risk engine overestimated CHD risk in type 2 diabetic patients in this cohort, and the proposed equation has superior predictability for CHD risk compared to the UKPDS risk engine.
연구의 목적은 가정에서 안정 시 인체의 생리적 활력 정보를 센서와 ICT 정보 기술을 통해 연속적으로 수집하는 시스템과 수집된 정보를 이용하여 당뇨병증 유무를 예측하는 인공신경망 기계학습 방법과 필수적인 기본 변수 값을 제시하였다. 연구 방법은 정상인(DM-) 20명과 당뇨병(DM+) 15명을 대상으로 BCG와 ECG 센서의 심박수 측정값의 상관 관계를 분석하였으며 상관 계수는 R2=0.959이다. Artificial Neural Network(ANN) 기계학습 프로그램을 이용하여 당뇨병증 예측 가능성을 확인하였고 입력 변수는 심박변이도의 시계열정보와 심박수, 심박변이도, 호흡율, 박동량 정보, 최저혈압, 최고혈압, 년령, 성별이며 ANN 기계학습 예측 정확도는 99.53%이다. 그리고 향후 ANN 기계학습 방법을 활용하여 BMI 정보를 이용한 당뇨예측 모델, 심장 기능 장애 예측 모델, 수면장애 분석 모델 등의 계속적인 연구가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.