• Title/Summary/Keyword: di-fructofuranose

Search Result 14, Processing Time 0.023 seconds

Cultivation of Arthrobactor sp. A-6 and Production of DFA III(Di-Fructofuranose Dianhydride) from Chicory Root Extract (Arthrobactor sp. A-6의 배양과 Chicory 뿌리 추출물에서 Di-Fructofuranose Dianhydride(DFAIII)의 생산)

  • 김기은;신창훈;최용진;김찬화
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2000
  • Arthrobacter sp. A-6 was cultivated and DFA III(di-fructofuranose dianhydride) was produced with inulin fructotransferase from the chicory root. The specific growth rate, yield of cell mass and yield of enzyme from the culture in variable chicory root extracts were studied and the results compared. Standard inulin solution(10%) was treated with the crude enzyme solution of inulin fructotransferase from the cell culture, 1.14mg/ml of DFA III was produced. The enzyme reactions were processed with various preparations of chicory root extracts in the same conditions. The highest yield of DFA III production(2.29 mg/ml) was obtained from the chicory roots without washing or extraction. The yield of DFA III from the washed chicory roots without extraction was at lowest(0.44 mg/ml). The production process of inulin fructotransferase and DFA III from the chicory root without prewashing or extraction steps were more efficient.

  • PDF

Kluyveromyces marxianus var. marxianus IFO 1735에 의한 Inulin Fructotransferase의 생산 및 이용에 관한 연구

  • 김재근;판정척부
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.277-285
    • /
    • 1997
  • Kluyveromyces marxianus var. marxianus isolated as an inulin-assimilating microorganism produces inulin fructotransferase (inulaseII) which catalyses the conversion of inulin into di-D-fructofuranose 1, 2' : 2, 3' dianhydrde (DFAIII). The DFA produced by the organism was isolated by using active carbon column, and identified as DFAIII by high performance liguid chromatography. The culture medium giving maximum inulaseII production was found to consist of 1% sucrose and 0.75% yeast nitrogen base (YNB). The inulasell production was induced by inulin or sucrose as a carbon source and increased by addition of YNB as a nitrogen source. Optimal initial pH of the culture medium, culture temperature and medium volume for the enzyme production were pH 4.7, 30$\circ$C and 140 ml, respectively. Under the optimal conditions described above, the enzyme activity in the culture supematant reached 4.2 units/ml after cultivation for 36 h. The DFAIII was accumulated at 13.25 mg/ml after 48 h of culture in the Jerusalem artichoke tuber medium.

  • PDF

감미료 소재로서 Di-D-Fructofuranose DianhydrideIII의 물리 및 생리적 특성

  • 박정복;김소자;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.619-623
    • /
    • 1996
  • Some physical and physiological properties of di-D-fructofuranose dianhydrideIII (DFAIII), as a new sweetener, were investigated via in vitro experiments. The disaccharide was prepared by decomposing inulin with inulin fructotransferase (depolymerizing) from Arthrobacter sp. A-6. DFAIII had more excellent heat and acid stability than sucrose. This was one of the most desirable properties especially for the oligomer types of sweetener. DFAIII showed the least pH drop in the Streptococcus mutans culture, compared with the other saccharides examined. This indicates that the sugar will be fairly effective for preventing dental caries. The saccharide also had a selective Bifidus growth-promoting effect in PYF medium. Whereas, E. coli did not show growth promotion in the DFAIII-containing medium. In the co-culture of Bifidus longum and E. coli in the BL medium, Bifidus longum had a selective growth while the growth of E. coli appeared rather to be inhibited.

  • PDF

Production of Inulin Fructotransferase(Depolymerizing) from Bacillus sp. snu-7 (Bacillus sp. snu-7에 의한 Inulin Fructotransferase의 생산)

  • Kim, Woo-Pyo;Kang, Su-Il;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.184-188
    • /
    • 1997
  • A bacterial strain, producing extracellular inulin fructotransferase which converts inulin into di-D-fructofuranose 1,2':2,3' dianhydride(DFA III), was isolated from soil and presumed as Bacillus sp.. The highest production of the enzyme was obtained by using medium containing Jerusalem artichoke extract as carbon source, peptone as organic nitrogen source, and $NH_4H_2PO_4$, as inorganic source. Under optimum condition, the enzyme activity of the culture broth supernatant reached maximal 2.61 units/ml after cultivation for 45 hrs.

  • PDF

Production of Inulin Fructotransferase (Depolymerizing) from Enterobacter sp. S45 (Enterobacter sp. S45에 의한 Inulin fructotransferase의 생산)

  • 강수일;김수일
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 1993
  • A bacterial strain, producing extracellular inulin fructotransferase which converts inulin into di-D-fructofuranose dianhydride (DFA) was isolated from soil and presumed as Enterobacter sp. The DFA isolated on Bio-gel P2 column was identified as DFA III by high performance liquid chromatography and $^13C-nmr$ spectroscopy. The enzyme production was induced by inulin and markedly enhanced by the addition of corn steep liquor and $NH_4H_2P0_4$ for nitrogen source. Under optimum condition, the enzyme activity in the culture broth reached at maximum, 0.22 unit/ml after cultivation for 72 hour.

  • PDF

High-Level Production of Low-Branched Levan from Pseudomonas aurantiaca S-4380 for the Production of $di-\beta-D-Fructofuranose$ Dianhydride IV

  • JANG KI-HYO;JANG EUN-KYUNG;KIM SEUNG-HWAN;KIM IN-HWAN;KANG SOON AH;KOH ISSAC;PARK YOUNG-IL;KIM YOUNG-JUN;HA SANG-DO;KIM CHUL HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • The IscA gene, encoding a levansucrase of 424 amino acids (aa) residues, was cloned from the genomic DNA of Pseudomonas aurantiaca S-4380, and overexpressed in Escherichia coli. The recombinant levansucrase overexpressed in E. coli was then used to produce levan from sucrose. Levan crystals with 98% purity could be obtained from the reaction mixture with $62\%$ yield using an alcohol precipitation method. The molecular weight of the levan was $7\times10^5$ daltons. Methylation studies showed that the levan was branched: main linkage C-2,6; branched linkage C-2,1; and degree of branching $6\%$. Three bacterial levans from different strains were incubated with levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032, which produced $di-\beta-D-fructofuranose$ dianhydride IV (DFA IV); final conversion yields from the levans to DFA IV were $39\%$ in Zymomonas mobilis, $53\%$ in Serratia levanicum, and $59\%$ in P. aurantiaca S-4380 levansucrase. The levan from P. aurantiaca S-4380 levansucrase gave the highest conversion yield of levan to DFAIV so far reported.

Purification and Characterization of an Inulin Fructotransferase from Flavobacterium sp. LC-413

  • Cho, Chul-Man;Lee, Sang-Ok;Hwang, Ji-Sook;Jang, Kyung-Lip;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.121-126
    • /
    • 1997
  • A bacterial strain LC-413, producing an extracellular inulin fructotransferase (depolymerizing) which converts inulin into di-D-fructofuranose dianhydride (DFAIII), was isolated from soil. Inulin fructotransferase from the isolate identified as a strain Flabobacterium sp. was purified from the culture broth by ammonium sulfate precipitation, followed by column chromatograpies on DEAE-Toyopearl 650 M and phenyl-Toyopearl 650 M. The purified enzyme gave a single band on an electrophoretic disc-gel. The molecular weight of the enzyme was estimated to be 44, 000 Da by SDS-polyacrylamide gel electrophoresis, and 45, 000 Da by gel filtration, suggesting the monomeric state of the enzyme. The isoelectric point of the enzyme was about pH 4.5. The optimal pH and temperature for the enzyme reaction were 6.0 and $50^{\circ}C$, respectively. The purified enzyme digested inulin into di-D-fructofuranose-l, 2': 2, 3'-dianhydride, confirming the enzyme was an inulin fructotransferase (inulinase II).

  • PDF

The Differential Immunomodulating Effects of Levan and DFA-IV on Macrophage Function

  • Park, Sul-Kyoung;Jang, Ki-Hyo;Kim, Mi-Hyun;Lim, Jung-Dae;Han, Eun-Tek;Jang, Seon-A;Kim, Kyung-Ho;Pyo, Suhk-Neung;Sohn, Eun-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Di-D-fructose-2,6':6,2'-dianhydride (DFA-IV) is a disaccharide consisting of two fructose residues that are prepared from levan by levan fructotransferase. Levan is a homopolysaccharide composed of D-fructofuranosyl residues joined by $\beta$-(2,6) and $\beta$-(2,1) linkages. We compared the immunomodulatory effects of levan with DFA-IV. Tumoricidal activity, phagocytosis and nitric oxide (NO) production were examined in levan- and DFA-IV-treated RAW264.7 cells. The NO production, tumoricidal and phagocytic activities were significantly increased in both treated cells. The results indicate that levan has significantly greater effects on tumoricidal activity than DFA-IV at low concentrations (1 ${\mu}g/mL$) and its effect on NO production shows a similar pattern. These results suggest that tumoricidal activity induced by both samples is mediated by NO production.

Purification and Characterization of Inulin Fructotransferase (Depolymerizing) from Arthrobacter sp. A-6

  • PARK, JEONG-BOK;YONG-JIN CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.402-406
    • /
    • 1996
  • Inulin fructotransferase (depolymerizing) (EC 2.4.1.93) was purified 34-fold from the culture broth of Arthrobacter sp. A-6 by using a combination of ammonium sulfate fractionation, DEAE-Sepharose CL-6B chromatography and Sephacryl S-200 gel filtration. The purified enzyme converts inulin into di-D-fructofuranose dianhydride III(DFA III) and small quantities of fructo-oligosaccharides. The temperature and pH optima of the enzyme were $70^{\circ}C$ and 6.0, respectively. Molecular weight of the enzyme was determined to be 49 kDa by 12$%$ SDS-polyacrylamide gel electrophoresis, and 145 kDa by Sephacryl S-200gel filtration. This indicates that the functional inulin fructotransferase of Arthrobacter sp. A-6 has a homomeric trimer structure. The enzyme had an isoelectric point of pH 4.6. The N-terminal amino acid sequence of the purified enzyme subunit was Ala-Asp-Asn-Pro-Asp-Gly(\ulcorner)-Ser-Asn-Met(or Glu)-Tyr-Asp-Val.

  • PDF

Production of Inulin fructotransferase(depolumerizing)by Arthrobacter sp. A-6 (Arthrobacter sp. A-6에 의한 Inulin Fructotransferase (depolymerizing)의 생산)

  • 박정복;권영만;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.68-74
    • /
    • 1995
  • A bacterial strain A-6 producing the high level of an extracellular inulin fructotransfe rase(depolymerizing)(EC 2.4.1.93) which converts inulin into di-D-fructofuranose dianhydride III (DFAIII) was isolated from soil. The isolated strain could be classified as a species belonging to the genus Arthrobacter based on its morphological and physiological characteristics identified in this work. Production of the enzyme was induced by inulin, and the highest activity was detected in the slightly acidic medium supplemented with 2.5% inulin and 0.1% trypton as a sole carbon and a nitrogen source, respectively. Under the optimal conditions, the enzyme activity in the culture supernatant reached approximately 60 uints/ml after 96 hours of cultivation. The optimum pH and temperature for the crude enzyme preparation from Arthrobacter sp. A-6 were pH 5.0 and 60$\circ$C , respectively. The DFA produced by the action of the inulin fructotransferase was confirmed to be DFAIII by paper chromatography, HPLC and $^{13}$C-NMR spectroscopy.

  • PDF