• Title/Summary/Keyword: dewatering efficiency

Search Result 53, Processing Time 0.018 seconds

Dewatering Filtrate Treatment with Center Well Depth of Secondary Clarifier in Small Sewage Treatment Plant (소규모하수처리시설의 이차침전조 내통길이 변화를 통한 탈수여액의 처리)

  • Choi, Jung-Su;Kim, Hyun-Gu;Lee, Dong-Ho;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.694-702
    • /
    • 2013
  • The purpose of this study is to evaluate a de-watering filtrate treatment and the possibility of securing biological treatment capacity by changing the structure of the secondary clarifier. Accordingly, the column test was conducted to determine the effect of polymer in the de-watering filtrate on sludge sedimentation. Also, the characteristics of de-watering filtrate processing was evaluated through batch test and continuous processing operation. The results showed that sludge settling velocity increased with higher polymer concentration, and that effluent SS concentration was found to decrease. Regarding processing characteristics of de-watering filtrate, the removal efficiency of TSS and TBOD5 increased as the length of secondary clarifier was longer. Also, comparing injections into anoxic tank and secondary clarifier, de-watering filtrate by continuous infusion treatment process showed stability in both conditions. Therefore, by modifying the structure of secondary clarifier, efficient processing of de-watering filtrate is expected to be possible and processing capacity of small sewage treatment plants is considered to be improved.

Estimation of GHGs Emission to Improvement of Facility Efficiency in the Food wastewater Treatment Process (식품폐수처리시설의 설비효율 개선에 따른 온실가스 배출량 평가)

  • An, Sang-Hyung;Song, Jang-Heon;Kim, San;Chung, Jin-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.378-384
    • /
    • 2019
  • In the food wastewater treatment facilities, the water quality improvement effect and the greenhouse gas emission amount followed by the change in electricity usage through a change of the aeration tank ventilation system were evaluated. also, the amount of greenhouse gas emission followed by the change in electricity usage through the change of the sludge dewatering, storage, transporting method was also evaluated. The total GHG emission from food wastewater treatment facility improvement were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The water quality improvement effect of wastewater treatment plant was found to be 63.3% for BOD removal rate, 42.0% for COD removal rate, 71.0% for SS removal rate and 39.6% for T-N removal rate. and according to the results of calculating output by applying both direct emissions of greenhouse gas (Scope 1) and the indirect emission (Scope 2) of greenhouse gas followed by changes in power consumption. It was estimated that there was a total of 276.0tCO2eq./yr(7.5%) greenhouse gas reduction effect from 3,668.8tCO2eq./yr before improvement to 3,392.8tCO2eq./yr after improvement. In this result is not due to the effects of water quality improvement of emission source, but because the reduction in electricity use has reduced the amount of greenhouse gas emissions.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.