• Title/Summary/Keyword: device-to-device verification

Search Result 478, Processing Time 0.035 seconds

A Design and Verification of MOSAIC Architecture Based on Self-Adaptive Software for the Military Mobile Equipment (군 모바일 단말기를 위한 자가적응 소프트웨어 기반 MOSAIC 아키텍처 설계 및 검증)

  • Kim, Jong-Young;Yoon, Hee-Byung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.852-860
    • /
    • 2010
  • An environment in which the software is operated become more complex and changed dynamically. Such software requires the ability to adapt in accordance with operating environments, by monitoring the changes of user requirements and operating environments. Especially, the mobile device used in military operation requires more dynamical adaptation than the mobile device in normal environment. In this paper, we propose MOSAIC architecture based on Self-Adaptive Software suitable for military mobile device and verify the results. The proposed architecture consists of context manager, evaluation manager and adaptation manager. We simulate the MOSAIC architecture by modelling PRE(Position Reporting Equipment) used in the army and verify four types of operational mode and dynamical reconfiguration of user interface.

Analysis on sEMG Signals of Contents Using Finger Tapping Device (Finger Tapping 기기를 활용한 콘텐츠의 sEMG 신호 분석)

  • Han, Sang-bae;Byeon, Sang-kyu;Kim, Jae-hoon;Shin, Sung-Wook;Chung, Sung-taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.153-160
    • /
    • 2019
  • In this paper, we would like to support anyone who can rehabilitate conveniently and happily by implementing rehabilitation device and game contents that can improve the motor ability of fingers. So we developed a Finger Tapping Device that can measure finger-regulation ability, accuracy, and agility and implemented tracking, visual response, finger-regulation on game contents by utilizing this device. The verification of usability was confirmed by analyzing sEMG signals during the execution of three types of game contents after attaching sEMG to the flexor digitorum poundus, which is most involved in finger movement. As a result of the experiment, activation of the flexor digitorum poundus was performed during execution of every game contents. Furthermore, we confirmed that there is a difference in agility by measuring the reaction time for each finger according to the visual response.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

Development of Real-Time Verification System by Features Extraction of Multimodal Biometrics Using Hybrid Method (조합기법을 이용한 다중생체신호의 특징추출에 의한 실시간 인증시스템 개발)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • This paper presents a real-time verification system by extracting a features of multimodal biometrics using hybrid method, which is combined the moment balance and the independent component analysis(ICA). The moment balance is applied to reduce the computation loads by extracting the validity signal due to exclude the needless backgrounds of multimodal biometrics. ICA is also applied to increase the verification performance by removing the overlapping signals due to extract the statistically independent basis of signals. Multimodal biometrics are used both the faces and the fingerprints which are acquired by Web camera and acquisition device, respectively. The proposed system has been applied to the fusion problems of 48 faces and 48 fingerprints(24 persons * 2 scenes) of 320*240 pixels, respectively. The experimental results show that the proposed system has a superior verification performances(speed, rate).

  • PDF

Implementation of Voice Awareness Security Sytems (음성인식 보안 시스템의 구현)

  • Lee, Moon-Goo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.799-800
    • /
    • 2006
  • This thesis implemented security systems of voice awareness which is higher accessible than existing security system using biological authentication system and is inexpensive in module of security device, and has an advantage in usability. Proposed the security systems of voice awareness implemented algorithm for characteristic extraction of inputted speaker's voice signal verification, and also implemented database of access control that is founded on extractible output. And a security system of voice awareness has a function of an authority of access control to system.

  • PDF

Non-Quasi-Static RF Model for SOI FinFET and Its Verification

  • Kang, In-Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.160-164
    • /
    • 2010
  • The radio frequency (RF) model of SOI FinFETs with gate length of 40 nm is verified by using a 3-dimensional (3-D) device simulator. This paper shows the equivalent circuit model which can be used in the circuit analysis simulator. The RMS modeling error of Y-parameter was calculated to be only 0.3 %.

Development of Neuromuscular Stimulus System using Wearable Ultra-miniature Lighting Modules and its Verification of Clinical Effectiveness (의복형 초소형 발광모듈을 이용한 신경근육 자극 시스템 개발 및 임상적 효과 검증)

  • Park, Se-Hyeong;Lee, Jong-Shill;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.23-33
    • /
    • 2009
  • It can be used easily to reduce rehabilitation and treatment time if diagnostic and therapeutic devices are attached to cloth or body. Therefore we developed neuromuscular wearable ultra-miniature lighting modules which can improve the neuromuscular function and verified its clinical effectiveness. The system is based on the ultra-miniature lighting treatment module and there are two types of systems. One of them is designed as an attached type and the other type is combined with clothing. The wearable ultra-miniature lighting module is composed of controller (battery, MCU, bidirectional transmitter and receiver), cable, treatment medium generating device and other peripheral devices. To verify the clinical effectiveness of this device, we observed the difference of the strength of a muscle before and after 650nm and 25mW laser irradiation on the reflex point for 1 to 4 seconds. Among 48 patients having the degenerative osteoarthritis, the muscle strength before and after irradiation of laser was $21.8{\pm}7.99$ and $27.3{\pm}8.43$. According to the result, the muscle strength after treatment was significantly increased (p<0.01). To whom having difficulty in visiting to OPD(Out-Patient Department), doctors medically examine the patients and find the therapeutic point, attachment of this wearable ultra-miniature lighting module can function as self treatment (treating instrument) and treatment assist at home. If doctor can remotely control the patient and take part in treatment, the therapeutic device could contribute to prevention and care device.

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF

Development of implant loading device for animal study about various loading protocol: a pilot study

  • Yoon, Joon-Ho;Park, Young-Bum;Cho, Yuna;Kim, Chang-Sung;Choi, Seong-Ho;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • PURPOSE. The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS. Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method, simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (${\mu}{\varepsilon}$) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS. The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION. Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study.

Design Methodology of Communication & Control Device for Smart Grid Power Facility based on DSP and Raspberry Pi (DSP와 라즈베리 파이를 기반으로 한 스마트 그리드 전력설비의 통신제어장치 설계 방법론)

  • Oh, Se-Young;Lee, Jun-Hyeok;Lee, Sae-In;Park, Chang-Su;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.835-844
    • /
    • 2021
  • In this paper, a power facility communication control device was designed to autonomously determine and separate the fault section through communication between power facilities in the smart grid distribution system. In the power facility communication control device, the control module was designed as a DSP to measure three-phase voltage and current, and the communication module was designed as an embedded-based Raspberry Pi to determine the fault section and realize the fault section separation through communication between power facilities. Communication between DSP and Raspberry Pi was designed by SPI communication, and communication between Raspberry Pi was designed based on Wi-Fi. Finally, a performance evaluation system based on three power facility communication control devices was built, and simulation verification was conducted for various fault events that may occur on the distribution line. As a result of the test evaluation, it was possible to confirm the effectiveness of the design methodology of the communication control device by showing the required response of the communication control device to all test cases.