• Title/Summary/Keyword: deviance information criterion

Search Result 17, Processing Time 0.022 seconds

Mesh selectivity of the bottom trammel net for spinyhead sculpin Dasycottus setiger in the eastern coastal sea of Korea (저층 삼중자망에 대한 동해안산 고무꺽정이 (Dasycottus setiger)의 망목 선택성)

  • PARK, Chang-Doo;BAE, Jae-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.317-326
    • /
    • 2017
  • Comparative fishing experiments were conducted in the eastern coastal waters near Uljin, Korea from 2002 to 2004, using the experimental trammel nets to estimate the selectivity for spinyhead sculpin Dasycottus setiger. The inner panels of the nets were made of nylon monofilament with four mesh sizes (82.2, 89.4, 104.8, and 120.2 mm) while its two outer panels were made of twisted nylon multifilament with a mesh size of 510 mm. The SELECT (Share Each Length's Catch Total) procedure with maximum likelihood method was applied to obtain a master selection curve. The different functional models (normal, lognormal, bi-normal, and logistic model) were fitted to the catch data. The lognormal model with the fixed relative fishing intensity was chosen as the best-fitted selection curve through comparison of model deviance and AIC (Akaike's Information Criterion). The optimum relative length (the ratio of fish total length to mesh size) with the maximum relative efficiency was obtained as 2.492.

Relation between body condition score and conception rate of Japanese Black cows

  • A. Setiaji;T. Oikawa;D. Arakaki
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1151-1155
    • /
    • 2023
  • Objective: This study analyzes interactions of body condition score (BCS) with other factors and the effect of BCS on estimates of genetic paremeters of conception rate (CR) in Japanese Black cows. Methods: Factors affecting CR were analyzed through the linear mixed model, and genetic parameters of CR were estimated through the threshold animal model. Results: The interactions between BCS and each season and the number of artificial inseminations (AI) was significant (p<0.05), but that between BCS and parity showed no significance for CR. High CR was observed with BCS 3 in autumn (0.56±0.01) and BCS 4 in summer (0.56±0.02). The highest CR with BCS 3 (0.56±0.02) and BCS 4 (0.55±0.01) was observed at first AI. With BCS 5, however, the highest CR (0.55±0.08) was observed at second AI. Conclusion: The model with BCS was notably conducive to the estimation of genetic parameters because of a low deviance information criterion of heritability that, nevertheless, was slightly lower than the model without BCS.

High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea

  • Kim, Yun Jeong;Park, Man Sik;Lee, Eunil;Choi, Jae Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.361-367
    • /
    • 2016
  • We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in $R^2$ from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

Survival Analysis for White Non-Hispanic Female Breast Cancer Patients

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4049-4054
    • /
    • 2014
  • Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.

Spatio-temporal analysis with risk factors for five major violent crimes (위험요인이 포함된 시공간 모형을 이용한 5대 강력범죄 분석)

  • Jeon, Young Eun;Kang, Suk-Bok;Seo, Jung-In
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.619-629
    • /
    • 2022
  • The five major violent crimes including murder, robbery, rape·forced indecent act, theft, and violence are representative crimes that threaten the safety of members of society and occur frequently in real life. These crimes have negative effects such as lowering the quality of citizens' life. In the case of Seoul, the capital of Korea, the risk for the five major violent crimes is increasing because the population density of Seoul is increasing as a large number of people in the provinces move to Seoul. In this study, to reduce this risk, the relative risk for the occurrence of the five major violent crimes in Seoul is modeled using three spatio-temporal models. In addition, various risk factors are included to identify factors that significantly affect the relative risk of the five major violent crimes. The best model is selected in terms of the deviance information criterion, and the analysis results including various visualizations for the best model are provided. This study will help to establish efficient strategies to sustain people's safe everyday living by analyzing important risk factors affecting the risk of the five major violent crimes and the relative risk of each region.

A Study on Characteristics and Predictions of Seasonal Chlorophyll-a using Bayseian Regression in Paldang Watershed (베이지안 추정을 이용한 팔당호 유역의 계절별 클로로필a 예측 및 오염특성 연구)

  • Kim, Mi-Ah;Shin, Yuna;Kim, Kyunghyun;Heo, Tae-Young;Yoo, Moonkyu;Lee, Su-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.832-841
    • /
    • 2013
  • In recent years, eutrophication in the Paldang Lake has become one of the major environmental problems in Korea as it may threaten drinking water safety and human health. Thus it is important to understand the phenomena and predict the time and magnitude of algal blooms for applying adequate algal reduction measures. This study performed seasonal water quality assessment and chlorophyll-a prediction using Bayseian simple/multiple linear regression analysis. Bayseian regression analysis could be a useful tool to overcome limitations of conventional regression analysis. Also it can consider uncertainty in prediction by using posterior distribution. Generally, chlorophyll-a of a P2(Paldang Dam 2) site showed high concentration in spring and it was similar to that of P4(Paldang Dam 4) site. For the development of Bayseian model, we performed seasonal correlation. As a result, chlorophyll-a of a P2 site had a high correlation with P5(Paldang Dam 5) site in spring (r = 0.786, p<0.05) and with P4 in winter (r = 0.843, p<0.05). Based on the DIC (Deviance Information Criterion) value, critical explanatory variables of the best fitting Bayesian linear regression model were selected as a $PO_4-P$ (P2), Chlorophyll-a (P5) in spring, $NH_3-N$ (P2), Chlorophyll-a (P4), $NH_3-N$ (P4) in summer, DTP (P2), outflow (P2), TP (P3), TP (P4) fall, COD (P2), Chl-a (P4) and COD (P4) in winter. The results of chlorophyll-a prediction showed relatively high $R^2$ and low RMSE values in summer and winter.

A development of stochastic simulation model based on vector autoregressive model (VAR) for groundwater and river water stages (벡터자기회귀(VAR) 모형을 이용한 지하수위와 하천수위의 추계학적 모의기법 개발)

  • Kwon, Yoon Jeong;Won, Chang-Hee;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1137-1147
    • /
    • 2022
  • River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.