• Title/Summary/Keyword: development trajectory

Search Result 437, Processing Time 0.031 seconds

Development of GNSS-only On The Move-RTK Technique for Highly Maneuvering Ground Vehicles

  • Jeon, Jong-Hwa;Yoo, Sang-Hoon;Choi, Jeung-Won;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.235-243
    • /
    • 2018
  • Conventional Real Time Kinematics (RTK) collect measurements in stationary state for several minutes to resolve the integer ambiguity in the carrier phase measurement or resolve the integer ambiguity on the move assuming low maneuvering movement. In this paper, an On The Move-RTK (OTM-RTK) technique that resolves the integer ambiguity on the move for fast and precise positioning of ground vehicles such as high maneuvering vehicles was proposed. The OTM-RTK estimates the precise amount of movement between epochs using the carrier phase measurements acquired on the move, and by using this, resolves the integer ambiguity within a short period of time by evaluating the integer ambiguity candidates for each epoch. This study analyzed the integer ambiguity resolution performance using field driving experiment data in order to verify the performance of the proposed method. The results of the experiment showed that the precise trajectory including the initial position bias can be obtained prior to resolving the integer ambiguity, and after resolving the integer ambiguity on the move, it was possible to obtain the bias-corrected precise position solution. It was confirmed that the integer ambiguity can be resolved by collecting measurements of about 10 epochs from the moving vehicle using a dual frequency receiver.

Regulation of International Economic-Legal Cooperation in the Field of Agricultural Production through the Prism of Information Technology Development

  • Matvieiev, Petro;Baadzhy, Nataliia;Gurenko, Maria;Myroshnychenko, Volodymyr;Feofanova, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.143-150
    • /
    • 2021
  • International economic and legal cooperation can ensure the transition of agriculture to the trajectory of sustainable development. The paper considers in detail the set of common goals and problems of an international nature, the solution of which is aimed at global legal regulation of cooperation between states. It is also noted about the impact of information technology on agricultural development. The following methods of scientific cognition are used: a historical, systematic approach to research, method of analysis, and synthesis. Research results: a scientific idea of the importance of international cooperation in general and global collaboration in the field of agricultural production in particular. It is stated that states are obliged to cooperate, regardless of differences in their political, economic, and social systems, in various areas of international relations to maintain international peace, security and promote worldwide economic stability and progress, the common good of peoples. It is emphasized the need to build such relations in the agricultural sector, which take into account the interests of all states.

Research of Communication Coverage and Terrain Masking for Path Planning (경로생성 및 지형차폐를 고려한 통신영역 생성 방법)

  • Woo, Sang Hyo;Kim, Jae Min;Beak, InHye;Kim, Ki Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.407-416
    • /
    • 2020
  • Recent complex battle field demands Network Centric Warfare(NCW) ability to control various parts into a cohesive unit. In path planning filed, the NCW ability increases complexity of path planning algorithm, and it has to consider a communication coverage map as well as traditional parameters such as minimum radar exposure and survivability. In this paper, pros and cons of various propagation models are summarized, and we suggest a coverage map generation method using a Longley-Rice propagation model. Previous coverage map based on line of sight has significant discontinuities that limits selection of path planning algorithms such as Dijkstra and fast marching only. If there is method to remove discontinuities in the coverage map, optimization based path planning algorithms such as trajectory optimization and Particle Swarm Optimization(PSO) can also be used. In this paper, the Longley-Rice propagation model is used to calculate continuous RF strengths, and convert the strength data using smoothed leaky BER for the coverage map. In addition, we also suggest other types of rough coverage map generation using a lookup table method with simple inputs such as terrain type and antenna heights only. The implemented communication coverage map can be used various path planning algorithms, especially in the optimization based algorithms.

Development of Multi-Body Dynamics Simulator for Bio-Mimetic Motion in Lizard Robot Design (도마뱀 로봇 설계를 위한 생체운동 모사 다물체 동역학 시뮬레이터 개발)

  • Park, Yong-Ik;Seo, Bong Cheol;Kim, Sung-Soo;Shin, Hocheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.585-592
    • /
    • 2014
  • In this study, a multibody simulator was developed to analyze the bio-mimetic motion of a lizard robot design. A RecurDyn multibody dynamics model of a lizard was created using a micro-computerized tomography scan and motion capture data. The bio-mimetic motion simulator consisted of a trajectory generator, an inverse kinematics module, and an inverse dynamics module, which were used for various walking motion analyses of the developed lizard model. The trajectory generation module produces spinal movements and gait trajectories based on the lizard's speed. Using the joint angle history from an inverse kinematic analysis, an inverse dynamic analysis can be carried out, and the required joint torques can be obtained for the lizard robot design. In order to investigate the effectiveness of the developed simulator, the required joint torques of the model were calculated using the simulator.

Development of Korean Preliminary Lunar Mission Design Software (한국형 달탐사 임무 예비 설계 소프트웨어의 개발)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Shim, Eun-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.357-367
    • /
    • 2008
  • Preparing for future Korean Lunar missions, preliminary Lunar mission design software is developed using a impulsive thrusting method. Developed software is capable of design and analysis every required mission phases to design Lunar mission, including the Earth departure, Lunar transfer, Lunar arrival and mission operation phases. Also, assuming that KSLV-II is selected as a launch vehicle, future Korean Lunar explorer's mass budget is estimated based on driven optimal trajectory characteristics. Tracking analysis is also performed using Deep Space Network including angle geometry analysis between Earth - Moon - Lunar explorer - Sun which are very important for communication, solar panel pointing strategy and eclipse analysis when Lunar missions are under designing phase.

A Study on the Telemetering Results of KSR-III Flight Test (KSR-3 비행시험 원격측정시스템 운용 결과)

  • Lee, Sang-Rae;Lee, Soo-Jin;Kim, Sung-Wan;Lee, Jae-Deuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.96-101
    • /
    • 2003
  • Korea Sounding Rocket(KSR)-III onboard telemetry system has acquired various data from subsystems and sensors in the rocket, and radiated PCM/FM data using two S-band antennas during the flight. Simultaneously, it is necessary that the ground receiving systems track the rocket, and receive and decode telemetry data. Also post processed telemetry data are needed to be broadcasted on ethernet network in real time. Range safety display system displays flight trajectory using telemetry data in mission control center, and so flight manager makes a decision for flight termination from the trajectory This paper describes operating technique about telemetry reception, the development for the realtime data processing system, and the results for telemetering reception on fight test. We telemetered, processed, and broadcasted numerous telemetry data during the flight test successfully.

The Biomechanical Analysis of Ballet Arabesque by Using Elastic Band (탄성밴드 사용유무에 따른 발레 아라베스크 동작의 운동 역학적 분석)

  • Kim, Min-Jung;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.265-274
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the effect of the elastic band on ballet arabesque based on kinematics analysis. Methods : To observe the effect of the elastic band, the availability of the elastic band during movement was set as the independent variable, and the dependent variables were set by using factors from two different categories such as motor mechanics and kinematics variables. For motor mechanics variable, the muscle activity and the center of pressure(COP)'s trajectory and velocity were used. Furthermore, the physical angle was used for kinematic variables. Data samples from the experiment was used to understand the correlation between independent and dependent variables while using paired samples t-test as a data analysis tool. Results : After analyzing the result of experiment, the usage of the Elastic band on ballet arabesque movement seemed to increase the activity of the agonistic muscle, which is mainly used for movement, and to improve the stability of the supporting leg by decreasing the trajectory and velocity of the center of pressure(COP). Moreover, the elastic band increased the level of elevation of the stretching leg with reducing the angle of the hip joint that resulted into a more stable movement and furthermore providing more beauty while standing on it. Conclusion : The movement training program while the using elastic band are expected to lead to appropriate muscular development and reduce the muscle imbalance, which usually occurs to dancers, during training with unfamiliar specific movements or strengthening muscular strength for a specific movement. In addition, this work is expected to be used as a training reference to understand and learn the fundamentals of movements of ballet and other dance fields.

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

Appropriateness Assessment of Dike Height of a Chemical Plant through Development of a Hazardous Chemical Leakage Trajectory Evaluation Module (유해화학물질 누출궤적 평가모듈 개발을 통한 화학공장 방류벽 높이의 적정성 평가)

  • Yoo, Byungtae;Kim, Hyeonggi
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.121-129
    • /
    • 2019
  • The Chemical Control Act of 2015 was enhanced to ensure the safe management of hazardous chemicals. In particular, there have been substantial changes in the standards for the installation and management of handling facilities for manufacturing and storing hazardous chemicals. However, some standards for handling facilities are difficult to implement due to a lack of physical space or because of safety accidents during facility improvements. Therefore, the Safety assessment system (SAS) has been operating for such facilities since 2018. This study developed a leakage trajectory evaluation module that can easily evaluate the outside of a dike for safety evaluation. We analyzed two case studies on a dike for hydrochloric acid and sulfuric acid storage tanks with this module and suggest a reasonable plan for the facility. We believe that it will be possible to more easily submit SAS reports at chemical plants by using this evaluation module. This study is expected to contribute to the improvement of the safety design of hazardous chemical handling facilities.

Design of Navigation Environment Generation Module of M&S Software for Integrated Navigation System Performance Evaluation

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;So, Hyoungmin;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.73-90
    • /
    • 2018
  • Various navigation systems are integrated with the Global Navigation Satellite System (GNSS) to improve navigation performance so that continuous navigation information can be obtained even when navigation performance is degraded or navigation is not available due to the outage of GNSS. Time and cost can be reduced by evaluating performance of the integrated navigation system through Modeling and Simulation (M&S) software prior to the deployment of the integrated navigation system. The measurements of the navigation system should be generated to evaluate performance through of the navigation system M&S software. This paper proposes a method of designing a navigation environment generation module in M&S software of the integrated navigation system. To show applicability of the proposed method to M&S software design of the integrated navigation system, functions are verified through MATLAB. And then visual C++ based M&S software for the integrated navigation system is implemented to check the operation of the navigation environment generation module. The reference trajectory is generated and true measurements of Global Positioning System (GPS), Korea Positioning System (KPS), and enhanced Long range navigation (eLoran) are generated from the reference trajectory. The navigation results obtained from the true measurements are compared with the reference trajectories. The results show that the measurements generated using the design generation module by the proposed method are valid and the navigation environment generation module can be applied to M&S software of the integrated navigation system.