• Title/Summary/Keyword: detonation flame arrester

Search Result 2, Processing Time 0.014 seconds

Quenching Effects of Acetylene, Hydrogen-Oxygen Detonation (폭굉제어기에 의한 수소. 아세틸렌 산소 혼합가스의 폭굉제어)

  • 김한석;문정기
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Quenching effects of acetylene and hydrogen into oxygen detonation by using detonation arrester [DA]are studied in this paper. The experiments were carried out in cylinderical shock tube. 5m long, 30mm dia., with stolchlometric ratio [SR]of each gas and 10-l20$\mu$ Cell Size of brass and Stainless Steel of DAs were installed in it To clarify arresting ability correlation with initial pressure, Pi, critical thickness, Tct, and shapes of supporting panel of DA are also investigated It is found that ­detonation velocities has most dependency on Pi, it shows notable changes around 0.5kgf/$\textrm{cm}^2$ for hydrogen, 0.15kgf/$\textrm{cm}^2$ for acetylen respectively, ­DA can be safety device able to arrest shock wave of detonation, ­over Tct flame transmission might be only the factor has to be considered, ­acetylene seems to be much more stronger detonation characteristics than hydrogen because of reaction heat.

  • PDF

A Study on the Safety Improvement in Incineration System from the Case Study of Acrylic acid manufacturing process Accident (아크릴산 제조공정 사고사례를 통한 소각 시스템의 안전성 향상 방안)

  • Ma, Byung-Chol;Lee, Keun-Won;Im, Ji-Pyo;Kim, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.52-58
    • /
    • 2012
  • Recently, waste gas incineration is increasing due to strong environmental regulatory system in Korea. These incinerating facilities are usually connected with the top of the storage tank through pipeline and incinerate off gas with the flame. Therefore, the flame originated from these facilities is likely to move back into pipeline and might cause an explosion of the storage tank. Accordingly, the purpose of this study is to suggest the preventive measures and the way to improve the safety of these incineration systems through the cause analysis of a major industrial accident occurred in a acrylic acid manufacturing process in Korea. As a result of the study, the preventive measures are suggested as follows. (1) Air or inert gas inflow facilities should be well designed to dilute flammable gases into air or inert gas sufficiently before the blower is restarted in order to prevent the explosion (2) It is needed for the detonation-type flame arresters to be installed on the top of the storage tanks. (3) In case of using the deflagration-type flame arresters, it is necessary to install a rupture disk before the arresters, or blow off the flame outside tanks by connecting the tank top and the incinerator with hood-type pipe. (4) TDR should be installed to be restarted automatically after the momentary power failure.