• Title/Summary/Keyword: determinantal map

Search Result 3, Processing Time 0.016 seconds

A CLASS OF GRADE THREE DETERMINANTAL IDEALS

  • Kang, Oh-Jin;Kim, Joo-Hyung
    • Honam Mathematical Journal
    • /
    • v.34 no.2
    • /
    • pp.279-287
    • /
    • 2012
  • Let $k$ be a field containing the field $\mathbb{Q}$ of rational numbers and let $R=k[x_{ij}{\mid}1{\leq}i{\leq}m,\;1{\leq}j{\leq}n]$ be the polynomial ring over a field $k$ with indeterminates $x_{ij}$. Let $I_t(X)$ be the determinantal ideal generated by the $t$-minors of an $m{\times}n$ matrix $X=(x_{ij})$. Eagon and Hochster proved that $I_t(X)$ is a perfect ideal of grade $(m-t+1)(n-t+1)$. We give a structure theorem for a class of determinantal ideals of grade 3. This gives us a characterization that $I_t(X)$ has grade 3 if and only if $n=m+2$ and $I_t(X)$ has the minimal free resolution $\mathbb{F}$ such that the second dierential map of $\mathbb{F}$ is a matrix defined by complete matrices of grade $n+2$.

Mashhad University, Department of Mathematics;

  • Yassi, M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.727-733
    • /
    • 2001
  • Let A be a commutative ring with nonzero identity and let M be an A-module. In this note we show that if $x = x_1, ..., x_n\; and\; y = y_1, ..., y_n$ both M-cosequence such that $Hx^T = y^T\; for\; some\; n\times n$ lower triangular matrix H over A, then the map $\beta_H : \;Ann_M(y_1,..., y_n)\;\rightarrow Ann_M(x_1,..., x_n)$ induced by multiplication by |H| is surjective.

  • PDF

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX

  • Kang, Oh-Jin;Kim, Joohyung
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • The authors [6] introduced the concept of a complete matrix of grade $g$ > 3 to describe a structure theorem for complete intersections of grade $g$ > 3. We show that a complete matrix can be used to construct the Eagon-Northcott complex [7]. Moreover, we prove that it is the minimal free resolution $\mathbb{F}$ of a class of determinantal ideals of $n{\times}(n+2)$ matrices $X=(x_{ij})$ such that entries of each row of $X=(x_{ij})$ form a regular sequence and the second differential map of $\mathbb{F}$ is a matrix $f$ defined by the complete matrices of grade $n+2$.