• Title/Summary/Keyword: deteriorated bridges

Search Result 74, Processing Time 0.022 seconds

Reliability-Based Assessment of Safety and Residual Carrying-Capacity of Steel-Box Pedestrian Bridges (신뢰성에 기초한 강상형 보도육교의 안전도 및 잔존 내하력평가)

  • 조효남;최영민;이은철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-211
    • /
    • 1996
  • A number of typical type of steel-box pedestrian bridges are constructed in the metropolitan highway or heavy traffic urban area. Although it has the advantage of speedy construction because of its simple structural form and prefabricated erection method, it has been reported that many of these bridges are deteriorated or damaged and thus are in the state such that it would give unsafe and uncomfortable feeling to pedestrians. In the paper, for the realistic assessment of safety and residual earring-capacity of deteriorated and/or damaged steel box pedestrian bridges, an interactive non-linear limit state model are formulated based on the von Mises' combined stress yield criterion. It is demonstrated that the proposal model is effective for the reliability-based safety assessment and residual carrying-capacity evaluation of steel-box pedestrian bridges. In addition, this study suggests an effective and practical field load test method for pedestrian bridges.

  • PDF

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Reliability-Based Assessment of Safety and Residual Load Carrying-Capacity of Curved Steel-Box Ramp Bridges (신뢰성에 기초한 강상형 곡선램프교의 안전도 및 잔존내하력 평가)

  • Cho, Hyo-Nam;Choi, Young-Min;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.51-63
    • /
    • 1997
  • Highly curved steel-box bridges are usually constructed as ramp structures for the highway interchange and metropolitan elevated highway junction, but a number of these bridges are deteriorated and damaged to a significant degree due to heavy traffic. The main objective of the study is to develop a practical reliability-based assessment of safety and residual load carrying-capacity of existing curved steel-box ramp bridges. In the paper, for the realistic assessment of safety and residual load carrying-capacity of deteriorated and/or damaged curved steel-box bridges, an interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. It is demonstrated that the proposed model is effective for the assessment of reliability-based safety and the evaluation of residual load carrying-capacity of curved steel-box bridges. In addition, this study comparatively shows the applicability of various reliability analysis methods, and suggests a practical and effective one to be used in practice.

  • PDF

The Development of Condition Degradation Model of Railway PC Beam Bridge Using Transition Probability (철도 PC Beam교량의 전이확률을 이용한 상태저하 모델개발)

  • Kwon, Se-Gon;Park, Mi-Yun;Kim, Do-Kie;Jin, Nam-Hee;Ku, So-Yeun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1-5
    • /
    • 2009
  • Recently, as a method of green-development and reduction of carbon dioxide emission, increased interest has been focused on a railway. Furthermore, an intensive study has been processed on capabilities of maintenance activities, economic efficiency of maintenance on rail structure and a design of railway structure as well as the development of materials. The purpose of this paper is to develop a deteriorated model of PC Beam Bridge due to timely changes and maintenance activities. Typically, there is definite difference between maintained bridges and non-maintained bridges. As a result of proper maintenance activity, a life time of a structure can be enhanced. In this study, we will research and analyze structures with ongoing maintenance. We will also process same procedures on structures without maintenance. Therefore, we can establish the significant role in a conditional change of a structure. Based on a study, we accomplish the development of a condition-deteriorated model. To develop deteriorated model of PC Beam Bridge, We apply Marcov Theory and develop a transition probability to show the life time of bridge. This study will provide a great benefit to decision making for maintenance activities on the railway bridges for future.

  • PDF

Load-Carrying Capacity Assessment of Deteriorated Rural Bridge

  • Kim, Han-Joong;Kim, Jong-Ok;Yang, Seung-Ie
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.36-45
    • /
    • 2002
  • Most of rural bridges have passed 30 years of age since they were built, which have to support unexpected overload caused by changed design load and excessive amount of transportation. For these rural bridges, repairs and replacements are needed. Even though there have been attempt to estimate the safety of existing bridges deteriorated with major defects, those approaches must rely on the observable damage and subsequent decisions are made subjectively. To avoid the high cost of rehabilitation, the bridge rating must correctly represent the present load-carrying capacity. Rating engineers use a methods such as Allowable Stress Design (ASD), Load Factor Design (LFD), and Load Resistance Factor Design (LRFD) to evaluate the bridge load carrying capacity. In this paper, the load rating methods are introduced, and it is illustrated how to use the load test data from literature survey. Load test is conducted to the bridge that was built 30 years ago in rural area. From load test results, new maintenance method is suggested instead of the bridge replacement.

Development of Rating System for Highway Bridges (도로교 내하급수 판정시스템 개발)

  • Cho, Hyo Nam;Chang, Dong Il;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.9-15
    • /
    • 1991
  • This study is directed for the development of rational rating models for realistic safety assessment and the computer rating system for highway bridges. For this purpose, the conventional rating system is considerably improved in appropriate way, and a rational rating system based on the reliabilty method is proposed to estimate safety of deteriorated bridges by using only the visual inspection data or the statistical data available. In addition. the rating system which can assess the realistic allowable passing tonnage of military vehicles in case of the military operations is also presented. From this study, it is known that the presented rating system and the computer program BRS(Bridge Rating System) provide an effective tool which can handle the degree of deterioration and various uncertainities of the bridge systematically. so it can be used widely for assessment of safety and load carrying capacity of existing deteriorated or damaged bridges.

  • PDF

Reliability-Based Assessment of Safety and Load Carrying Capacity of Steel-Box Pedestrian Bridges (신뢰성에 기초한 강상형 보도육교의 안전도 및 내하력 평가)

  • 조효남;최영민;이은철
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.189-201
    • /
    • 1997
  • A number of standard type of steel-box pedestrian bridges are constructed in th metropolitan high way or heavy traffic urban area. Although it has the advantage of speedy construction because of its simple structural form and prefabricated erection method, it has been reported that many of these bridges are deteriorated or damaged and thus are in the state such that it would give unsafe and uncomfortable feeling to pedestrians. In the paper, for the realistic assessment of safety and load carrying capacity of deteriorated and/or damaged steel box pedestrian bridges, an interactive non-linear limit state model is formulated based on the von Mises' combined stress yield criterion. It has been demonstrated that the proposed model is effective for the reliability-based safety assessment and load carrying capacity evaluation of steel-box pedestrian bridges. In addition, this study suggests an effective and practical field load test method for pedestrian bridges.

  • PDF

Failure Analysis of Deteriorated Reinforced Concrete T-Girder Bridge Subject to Cyclic Loading (정적 반복하중을 받는 노후된 철근콘크리트 T형교의 파괴해석)

  • 송하원;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.291-301
    • /
    • 1998
  • In this paper, two dimensional and three dimentional modeling techniques are proposed for the failure analysis of deteriorated reinforced concrete T-girder bridge subjected to cyclic loading up to failure. For the nonlinear failure anaysis, a tension stiffening model which can consider degradation of bond between reinforcement and surrounding concrete due to corrision of rebars in old bridge is proposed and a modeling technique for the supports conditions of the bridges which can consider degradation of bearing at supports in old bridge is also proposed, The analysis results along with comparisons with full-scale failure-test results confirm that finite element modeling techniques in this paper can be well applied to the failure analyses of in-situ old reinforced concrete T-girder bridges subjected to cyclic loading and the support condition modeling especially affects the bridge strength significantly.

Development of Quantitative Model for Structural Performance of Concrete Bridges Considering of Loads and Environmental Factors (하중과 환경인자를 고려한 콘크리트교량의 정량적 구조성능 평가모델 개발)

  • Oh, Byung-Hwan;Kim, Dong-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.235-242
    • /
    • 2004
  • Bridge Management System (BMS) requires a more objective condition assessment over the lifespan of a given bridge. Thus, a quantitative assessment model of resistance capacity was developed here to meet the requirement for deteriorated concrete bridges. The model focuses on damage mechanisms of concrete bridges deteriorated by traffic loads and environment factors such as chloride and carbonation attacks. Also, it was applied to a typical concrete slab bridge which was severely damaged due to both load and environmental conditions. It was shown that the proposed quantitative model simulates well the deterioration level considering the two damage criteria.

Diffusion of Chloride Ions and Evaluation of Lifetime in Highway Bridges (고속도로 교량의 염소이온확산 특성과 공용수명 평가)

  • Shin, Jae-In;Park, Chang-Ho;Lee, Byeong-Ju;Kim, Hyeong-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.152-158
    • /
    • 2007
  • Chloride attach is one of the main factors which cause the deterioration of structures. In the case highway bridges, de-ice salts very significantly increase the surface scaling due to frost action. The deteriorated concrete is subject to experience degrading of durability under chloride attach environment. In this study, diagnosis report of 147 bridges is investigated and core sample of 21 bridge decks is examined and analyzed. The results show that the cover of decks concrete is required more than 8cm for retaining bridge lifetime over 30 years.