• Title/Summary/Keyword: detergent removal

Search Result 77, Processing Time 0.024 seconds

A Study on the Removal Efficiency of Pesticide Residues in Fruits and Vegetables Treated by Additional Materials (첨가제 처리에 의한 과.채류 중 잔류농약 제거효과 연구)

  • Ku, Pyung-Tae;Jin, Seong-Hyun;Kang, Jung-Mi;Kwon, Hyuk-Dong;Park, Sun-Hee;Lee, Ji-Yoon
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.388-393
    • /
    • 2005
  • This study was conducted to experiment the removal efficiency of 6 pesticides in fruits and vegetables using various washing solutions. As results, the average removal efficiencies of pesticides washed with tap-water were 68.3%, whereas those washed by ultrasonic cleaning for 2 and 5 minutes were 73.7% and 82.5%, respectively. Using different washing solutions with various additional materials such as 0.5% detergent, 5% vinegar, 5% salt and flour, the removal rates were 82.9%, 76.9%, 75.8% and 75.7%, respectively. With 0.5% detergent, pesticides were 20% more removed when washed by ultrasonic cleaning than tap-water washing; moreover, Chlorthalonil in cherry tomato showed the highest removal efficiency while EPN in grape washed with tap-water showed the lowest. The order of removal efficiencies of pesticides were Chlorthalonil (90.0%)>Procymidone (81.3%)>Chlorpyrifos (76.6 %)>Endosulfan (75.7%)>Fenitrothion (75.5%)>EPN (73.8%).

Removal Efficiency of Pesticide Residues on Apples by Ultrasonic Cleaner (초음파 세척기를 이용한 사과의 잔류농약 제거 효과)

  • Yoon, Chae-Hyuk;Park, Woo-Churl;Kim, Jang-Eok;Kim, Chung-Hyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.255-258
    • /
    • 1997
  • In order to determine the removal efficiency of pesticide residues on apples by ultrasonic cleaner, apples(Fuji var.) were artificially treated by dipping in water solution of fenitrothion EC, chlorpyrifos EC and phenthoate EC. The treated apples were washed by the ultrasonic cleaner with water, 30% ethanol solution or 0.2% detergent solution, respectively. The removal efficiency of fenitrothion, chlorpyrifos and phent-hoate by ultrasonicated washing in water for 0.5min. was 39.2%, 32.0% and 50.4%, respectively, but there was a tendency to decrease the removal efficiency of the pesticide residues as the duration of ultrasonicated washing period is increased. The maximum removal efficiency of the pesticide residues washed in the detergent solution was observed by ultrasonicated washing the samples for 5min. and it was recorded as 33.5% ; fenitrothion, 30.1% ; chlorpyrifos and 48.3% ; phenthoate, respectively. However it's appeared that the longer the ultrasonicated washing period in 30% ethanol solution the more pesticides from the apples were removed and the maximum removal efficiency of the pesticides was recorded as 66.2%(fenitrothion ; washed for 15min.), 41.7%(chlorpyrifos ; washed for 10min.), 74.2%(phenthoate ; washed for 10min.).

  • PDF

Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration (Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성)

  • Joo, Han-Seung;Choi, Jang Won
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.352-360
    • /
    • 2012
  • Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

Removal Rate of Residual Pesticides in Perilla Leaves with Various Washing Methods (수세 방법에 따른 깻잎의 잔류농약 제거율 연구)

  • Lee, Jong-Mee;Lee, Hye-Ran;Nam, Sang-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.586-590
    • /
    • 2003
  • Removal rates of residual organic phosphorous pesticides (chlorpyrifos-methyl and fenitrothion) in Perilla leaves by various washing methods were determined. The removal rates using stagnant tap water were 20.05 and 17.70% for chlorpyrifos-methyl and fenitrothion, whereas 44.28 and 39.10% using flowing tap water, and 19.14 and 15.43% using activated carbon-added stagnant tap water, respectively. Activated carbon-added flowing stagnant tap water removed 25.29 and 15.43% of chlorpyrifos-methyl and fenitrothion, and removal rates were 53.51 and 50.62% with alkaline solution and 30.25 and 28.09% with acidic solution, respectively. With neutral detergent solution, removal rates were 81.52 and 76.56% for chlorpyrifos-methyl and fenitrothion, respectively. Results revealed washing method using neutral detergent solution was most effective for removing residual pesticides.

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Characteristics of Artificially Soiled Fabrics Containing Ferric Oxinate as a Tracer (Ferric Oxinate를 標職物質로 사용한 人工汚染布의 洗滌特性)

  • Ahn, Kyung Cho;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.83-89
    • /
    • 1996
  • Carbon black has been used as a particulate soil to prepare artificial soiled fabrics for detergent study but it has two major defects. The one is the difficulty of quantitative analysis of carbon black for evaluate the detergency, the other is that there is no reliable correlation between the removal of carbon black and oily soil which is the major component of natural soil. In this study ferric oxinate was used as a particulate soil since it is in black color and can be soiled on fabric by suspension in water or by solution in chloroform and it is easily analysed quantitatively by extracting it from soiled fabric with chloroform to get correct value of soil removal. The characteristics of soil removal of ferric oxinate were compared with that of carbon black and Sudan black, an oil soluble dye, which had been proved that it's detergency correlated with that of oily soil The soil removal of ferric oxinate and Sudan black estimated from quantitative analysis and from K/S value were in good agreement whereas the result calculated by simple reflectance was consistently low. The soil removal of ferric oxinate was exceeded from that of carbon black without regard to surfactants, Triton and Las, but the effect of washing conditions such as temperature and washing time on soil removal of both soils with different suffactants showed no considerable difference. Though the soil removal of Sudan black was little effected by the conditions, the soil removal in Triton exceeded considerably that of in Las, which is the characteristic of oily soil. Thus the soil removal of Sudan black was in good agreement with ferric oxinate in Triton, a non-ionic surfactant, and with carbon black in Las, an artionic surfactant. We concluded that ferric oxinate is a more realistic model particulate soil for artificial soiled cotton fabric washed with non-ionic surfactant than carbon black.

  • PDF

Removal Effects of Organic-Phosphorus Pesticide Residue in lettuce by washing methods (세척방법에 따른 상추중 유기인 잔류농약의 제거효과)

  • Ko, Bok-Sil;Jeon, Tae-Hwan;Jung, Kyu-Saeng;Lee, Sung-Kook
    • Journal of agricultural medicine and community health
    • /
    • v.21 no.2
    • /
    • pp.159-171
    • /
    • 1996
  • It is investigated to determine the removal efficiency of organic - phosphorus insecticide residues in lettuce by washing processes, the 5 washing solution (stagnant tap water, flowing tap water, alkaline solution, acidic solution) were used with the washing time(10, 30, 50sec) and frequencies(1, 2, 3 washing, 2 rinsing). The removal efficiency of residual pesticides by 5 washing methods was increased on the more washing time and frequency, and also was the highest on the 3 times washing for each 50 sec. The removal rate with stagnant tap water was 33.7% of Diazinon, 45.7% of Dimethoate and 24.6% of Fenitrothion, but 29.4% of Diazinon, 37.7% of Dimethoate and 24.5% of Fenitrothion with flowing tap water. Therefore, the former was significantly higher effective than the latter one. The removal rate of residual pesticides with alkaline solution showed 32.1% of Diazinon, 49.5% of Dimethoate and 29.9% of Fenitrothion, and 30.4% of Diazinon, 36.4% of Dimethoate and 21.0% of Fenitrothion with acidic solution. The washing efficiency of neutral detergent showed the most effective result than others with 47.1% of Diazinon, 58.0% of Dimethoate and 39.5% of Fenitrothion. Consequently, it's appeared that the neural detergent washing was the most effective method on the 3 times washing for each 50 sec.

  • PDF

Removal of Malathion Residues from Fruits and Vegetables by Washing Processes (과일채소중 말라티온 잔류분(殘溜分)의 세척효과)

  • Shim, Aei-Ryun;Choi, Eon-Ho;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.418-422
    • /
    • 1984
  • In order to determine the removal efficiency of pesticide residues in fruits and vegetables by washing processes, samples of lettuce, young Chinese radish, Chinese cabbage, green red pepper, strawberry and grape were artificially contaminated with malathion and washed according to the household practices. After three times washings with water, the remaining ratios of malathion residues in grape, green red pepper, strawberry, young Chinese radish, lettuce and Chinese cabbage were 9.7%, 25.2%, 28.0%, 29.7%, 38.9% and 57.5%, respectively. After washing with detergent solution followed by two times rinsing with water, the remaining ratios of malathion residues in the same food samples were 1.6%, 8.3%, 15.8%, 24.8%, 27.2% and 45.9%, respectively. The removal efficiency of malathion by detergent washing was significantly higher than the water washings only. The removal ratio of malathion residues was the highest in the first washing and the ratio fell greatly in the following washings. The removal efficiency was not quite different in the temperature range of $5-35^{\circ}C$ of the washing solution, but the efficiency at $100^{\circ}C$ was 2-3 times higher than other temperature ranges.

  • PDF

Effects of protein concentration and detergent on endotoxin reduction by ultrafiltration

  • Jang, Hyun;Kim, Hyo-Seung;Moon, Seung-Cheol;Lee, Young-Rae;Yu, Kang-Yeoul;Lee, Byeong-Kil;Youn, Hyun-Zo;Jeong, Young-Ju;Kim, Byeong-Soo;Lee, Sung-Ho;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.462-466
    • /
    • 2009
  • Lipopolysaccharide (LPS), found in the outer membrane of Gram negative bacteria, only exerts its toxic effects when in free form. LPS has three major parts, lipid A, the toxic component, along with a core polysaccharide and O-specific polysaccharide. LPS monomers are known to have molecular masses between 10 to 30 kDa. Under physiological conditions, LPS exists in equilibrium between monomer and vesicle forms. LPS removal by 100 kDa ultrafiltration was more efficient (99.6% of LPS removed) with a low concentration of protein (2.0 mg/ml) compared to a high concentration (20.1 mg/ml). In the presence of different detergents (0.5% Tween 20, 1.0% taurodeoxycholate and 1.0% Triton X-100), LPS removal was more efficient at low protein concentrations (2.0 mg/ml) compared to high protein concentrations (20.1 mg/ml).

Purification and Characterization of Metalloprotease from Serratia marcescens PPB-26 and Its Application for Detergent Additive

  • Thakur, Shikha;Sharma, Nirmal Kant;Thakur, Neerja;Bhalla, Tek Chand
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • In this study, the extracellular metalloprotease from Serratia marcescens PPB-26 was purified to homogeneity via ethanol fractionation and DEAE-cellulose column chromatography. Thus, a 3.8-fold purification was achieved with a 20% yield and specific activity of 76.2 U/mg. The purified protease was a 50-kDa monomer whose optimum pH and temperature for activity were 7.5 and $30^{\circ}C$ respectively; however, it was found to remain active in the 5-9 pH range and up to $40^{\circ}C$ for 6 h. The protease had a half-life of 15 days at $4^{\circ}C$, an optimum reaction time of 10 min, and an optimum substrate (casein) concentration of 0.25%. Furthermore, the Michaelis constant ($K_m$) and reaction velocity ($V_{max}$) of the protease were calculated to be 0.28% and $111.11{\mu}moles/(min{\cdot}mg)^{-1}$, respectively. The protease was stable when subjected to metal ions (2 mM), showing increased activity with most (especially $CoCl_2$ and $MgSO_4$ (30.54% increase)). It was also stable when exposed to oxidizing agents, bleaching agents, and detergents (5% v/v for 60 min). It retained 93% of its activity in non-ionic detergents (Tween-20, Tween-80, and Triton X-100). Moreover, wash performance analysis in commercial detergents (Ariel and Tide) showed that not only was the protease capable of protein stain removal, but also reduced cleaning time by 80% when added to detergents. Thus, the Serratia marcescens PPB-26 metalloprotease appears to be a promising new candidate as a laundry additive in the detergent industry.