• Title/Summary/Keyword: detention storage

Search Result 54, Processing Time 0.027 seconds

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area

  • Lee, Jung-Sik;Lee, Jae-Joon;Kim, Kyu-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.21-35
    • /
    • 1996
  • This Study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Hypothetical areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer ares is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall freqyencies, land uses, drainage patte군, basin shates and detention storage policies are considered. Folw reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved 노두 the detention storage is planned at the watershed level rather than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2 and Seongnae 1-are selected on the basis of hydrologic response charactaristics. Through the regression analysis between dimensionless deterntion storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage faclities are presented.

  • PDF

A Feasibility Study on Supplying Stream Minimum Flow Using Detention Storage in Developing Planned District (단지계획지구 홍수저류지의 하천유지유량 공급방안 연구)

  • Noh Jaekyoung;Park Hyun-goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1219-1223
    • /
    • 2005
  • This study was accomplished to confirm the possibility of supplying stream minimum flow from detention storage which was determined to reduce peak flows of flood within developing planned district. The results analyzed was summarized as follows; Firstly, Sin-gil district situated in Ansan city was selected, of which watershed area has $0.56km^2$. And detention storage was determined to $5,370m^3$ from analyzing flood volume by the SCS unit hydrograph method. Secondly, using Visual Basic ver 6.0, a detention storage water balance model was developed, in which simulation was based on conditioning storage inflow and outflow according to streamflow volume or rate state. And streamflow was simulated using the DAWAST model. Thirdly, detention operation scenarios were consisted of the combinations with inflow referencing streamflow of 5mm/day, 10mm/day and outflow referencing streamflow of 1mm/day, 2mm/day. The developed detention storage water balance model was operated to simulate daily water storages of detention sized on flood by scenarios. Stream minimum flows were able to be supplied during 209 days to 237 days per a year, total volume of stream minimum flows supplied for this period was analyzed to reach 27 to $55\% of yearly streamflow volume. If inflow criteria of streamflows to detention was considered to be established on a theoretical condition, it is expected to supply stream minimum flows of 20 to $30\% of yearly streamflow from stream to detention. Also to maximize function of supplying urban stream minimum flow from detention storages, sewage waters within developing planned district have to be treated and entered to detention inflow together with streamflows to enrich function of detention planned to reduce flood volumes.

  • PDF

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area (도시유역에서 지체저류시설의 수문학적 설계에 관한 연구)

  • 이정식;이재준
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.159-173
    • /
    • 1995
  • This study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Fictitious areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer area is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall frequencies, land uses, drainage patterns, basin shapes and detention storage policies are considered. Flow reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved when the detention storage is planned at the watershed level than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2, Seongnae 1-are selected on the basis of hydrologic response characteristics. Through the regression analysis between dimensionless detention storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage facilities are presented.

  • PDF

A Study on the Calculation of Storage Volume of Storm-Water Detention Basins for Small Urban Catchments (도심지 소유역에 적용 가능한 우수저류조의 용량 산정에 관한 연구)

  • Kim, Dae Geun;Koh, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.619-624
    • /
    • 2005
  • This work is for examining a simplified equation based on the rational formula, which can easily decide storm-water detention volume in small urban catchments. The storm-water detention volume is determined by the inflow hydrograph flowing to detention basin and the outflow hydrograph discharged from the detention basin. The ratio of average outflow over the period of rainfall duration against allowable discharge was 0.5 in former simplified equation. But this research has found that the average outflow ratio depends on the storage methodology. In the case of the on-line storage method, the average outflow ratio is a function of the time of concentration of the catchments and rainfall duration, which ranged from 0.5~1.0. In the case of the off-line storage method, the average ratio is a function of peak discharge and allowable discharge except above time of concentration and rainfall duration, where its function value ranged from 1.0~2.0. When applying this equation to small catchment in Mokpo city, South Korea, we could easily calculate the relation curve between the storm-water detention volume and allowable discharge.

SS Removal-rate Efficiency of Storm-water Detention Storage Tank Depending upon Length, Inside Training Wall and Gravel Filling (우수저류조의 형상과 도류벽 및 자갈채움에 따른 SS 제거효율)

  • Lee, Jong Tae;Seo, Hong Joon;Seo, Kyung A
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.655-667
    • /
    • 2009
  • An experimental study is performed on reducing the pollutants supplied by storm water through enhancing efficiency of SS from the detention storage tank where CSOs are kept temporarily before discharge to the receiving water system. SS removal efficiency is investigated in accordance with various conditions of the detention pond-such as its length, the existence of training wall, and the use of gravel filling. The removal efficiency is strongly affected by the detention pond's length until the critical falling distance of the suspended solids is reached. For cases where the tank has a length longer than this critical condition, the removal rate shows less sensitivity. To enhance the SS removal efficiency of tanks of shorter than the critical length, we studied alternative types of tank in which inside training walls are installed. The results showed improvement of 14 to 37% in removal efficiency in 2hours detention(2 training walls). The important factor in achieving a high SS removal rate is ensuring the critical length of the detention pond, but for the cases where the basin length cannot be guaranteed, baffles or a gravel filling scheme may be introduced to attain considerable efficiency. The results of studying and comparing different storage tank conditions show that, in terms of elimination efficiency, a storage tank with gravel filling and training walls > a storage tank with gravel filling > a storage tank with training walls > an empty tank. The experimental results should contribute to development of related further research, by empirically verifying the already assumed importance of critical falling distance, training walls, and gravel filling schemes.

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

A Development of Simplified Method for the Detention Pond Design with Runoff Reduction (유출저감용 저류지 설계를 위한 간이기법 개발)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Kim, Ho-Nyun;Lee, Sang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.632-635
    • /
    • 2007
  • Detention pond has an important role in peak flow reduction to mitigate flood damage. Design of detention pond is accomplished through the preliminary stage, planning stage, and design stage in general. New development projects produce increased peak flow and flow amounts. In this case it is necessary to design the detention pond easily and simply. The simple procedure of detention pond design is proposed in this study. The relevant variables are peak flow ratio ($\alpha$) for the before and after development, and storage ratio which is ratio of storage volume to flow amounts. Simplified method for the detention pond design with runoff reduction is easily used for practical purposes.

  • PDF

Planning Models for Detention Ponds with Consideration of the Urbanization Effects (도시화 영향을 고려한 유수지 계획모형)

  • 이종태;윤세의;이재준;윤용남
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.73-84
    • /
    • 1991
  • A number of planning models that are used for preliminary design of detention ponds in urban area were compared with consideration of urbanization effects. The characteristics of hydrological parameters $\alpha$, $\gamma$ which are used in planning models wee analyzed. And a new planning model for detention ponds was suggested. The required storage volumes of the Sinjung I, Myunmock, and Hannam detention pond were calculated by the planning models with the catchment data. The applicability of planning models to estimate the required storage volume of detention pond was investigated. Mori and Rational model have the trend of overstimation of storage volumes of detention ponds, on the other hand Abt & Grigg and Kadoya model show the trend of understimated values, and the rest of the planning models show the reasonable volumes.

  • PDF

An Analysis of Characteristic Parameters for the Design of Detention Pond in Urbanized Area (도시유역에서 저류지 설계를 위한 특성인자 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.37-47
    • /
    • 2006
  • Urban development results in increased runoff volume and flowrates and shortening in time of concentration, which may cause frequent flooding downstream. Flow retardation structures to limit adverse downstream effects of urban storm runoff are used. There are various types of flow retardation measures include detention basins, retention basins, and infiltration basins. In basic planning phase, a number of planning models of detention ponds which decide storage volume by putting main variables were used to design detention ponds. The characteristics of hydrological parameters $\alpha,\;\gamma$ which are used in planning models of detention pond were analyzed. In this study, detention ponds data of Disaster Impact Assessment report at 22 sites were analyzed in order to investigate correlation between characteristic of urban drainage basin parameter and characteristics of detention pond parameter due to urbanization effects. The results showed that storage volume was influenced by peak discharge ratio $\alpha$ more than runoff coefficient ratio $\beta$ and peak discharge ratio $\alpha$ was influenced by runoff coefficient ratio $\beta$ less than regional parameter n. Storage ratio was mainly influenced by duration of design rainfall in the case of trapezoidal inflow hydrograph such as Donahue et al. method.

A Development of Simplified Design Method of the Detention Pond for the Reduction of Runoff (우수유출저감용 저류지의 간편설계기법 개발)

  • Lee, Jae-Joon;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.693-700
    • /
    • 2008
  • Detention pond has an important role in peak flow reduction to mitigate flood damage. Design of detention pond is accomplished through the preliminary stage, and design stage in general. New development projects produce increased peak flow and flow amounts. In this case it is necessary to design the detention pond easily and simply. A simplified design method of the detention pond is suggested in this study. Used design variables are peak flow ratio(${\alpha}$) and storage ratio($S_r$). ${\alpha}$ is the peak flow ratio of before and after development of the basin. $S_r$ is a ratio of storage volume to total runoff volume. Applicability of the proposed method was also proved. The simple procedure of detention pond design is proposed in this study.