• Title/Summary/Keyword: detent force reduction method

Search Result 14, Processing Time 0.025 seconds

Analysis of Detent Force Reduction Method in a Permanent Magnet Linear Synchronous Motor

  • Jang, Seok-Myeong;Yoon, In-Ki;Lee, Sung-Ho;Kang, Do-Hyun;Jeong, Yeon-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The severe problem in improving the positioning precision of a permanent magnet linear synchronous motor (PMLSM) is the large detent farce caused by the permanent magnet arrangement. It is generally an undesired effect that contributes to the torque ripple, vibration and noise of machine. The detent force is arisen from the difference of the position of a permanent magnet end and a tooth position. In this paper, the four methods to reduce detent force were studied and analyzed. The methods are adjusting the width of permanent magnet, varying the shape of armature teeth, relocating the permanent magnet, and adjusting the width of permanent magnet and relocating the permanent magnet at the same time. To analyze the detent farce according to flour methods, a two-dimensional Finite Element Analysis [FEA] was used and we compared with the ratio of reduction of the detent farce according to the flour methods.

A Study on the V-skew Model for Minimization of Detent Force and Lateral Force in PMLSM (PMLSM의 디텐트력 및 Lateral Force 최소화를 위한 V-skew 모델에 관한 연구)

  • Hwang, In-Cheol;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.390-397
    • /
    • 2008
  • Permanent Magnet Linear Synchronous Motor (PMLSM) has high efficiency, high energy density, and high control-ability. But, the detent force always is produced by the structure of slot-teeth. There are the disadvantages such as noise and vibration of the apparatuses are induced and the control ability is curtailed because detent force acts as thrust ripple. Therefore, the detent force reduction is an essential requirement in PMLSM. Generally, the method, skewing permanent magnet or slot-teeth, is used to reduce the detent force. But the thrust is decreased at the same time. If permanent magnet is skewed, the lateral force which operates as the perpendicular direction of skew direction is generated in linear guide of PMLSM. So, V-skew model is proposed for the reduction of lateral force. The lateral force acts as braking force in linear motion guide, and it has bad influence to the characteristics of PMLSM. However, these problems will not be solved by 2-dimensional Finite Element Analysis (FEA). So, in this paper 3-dimensional FEA is applied to analyze the PMLSM where permanent magnet is skewed and has overhang. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3-dimensional FEA and the results are compared with experimental values to verify the propriety of analysis.

Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure

  • Eid Ahmad M.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 2006
  • Various methods have been discussed to reduce detent force in a tubular permanent magnet type linear single phase AC generator. In particular, the proposed methods depend on variations of the permanent magnet construction. These methods include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of optimizing the magnet length. The undesired detent force ripples were calculated by a two dimensional Finite Element Method (FEM). Moreover, the generated electromotive force in the stator coils was calculated for each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the detent force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that sloping the permanent magnet decreased the detent force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

Optimal Arrangement Method of Permanent Magnets for Reduction of Detent Force of a Linear Synchronous Motor (선형 동기전동기의 Detent Force 저감을 위한 영구자석 최적 배치방법)

  • Jung, In-Soung;Hur, Jin;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.138-144
    • /
    • 2000
  • The detent force caused by the interaction of magnets with the teeth of a armature core deteriorates the driving performance of a permanent magnet linear synchronous motor. In this paper, we analyze the fields and forces of a linear synchronous motor with segmented or skewed magnet arrangement according to lateral overhang length of permanent magnets. For the analysis, the 3-dimensional equivalent magnetic circuit network method is used. The detent force and the static thrust are analyzed according to the segmented or skewed angle and the overhang length of permanent magnets, and the optimal angles that the detent force is minimized are found out in each case. The analysis results are compared with the experimental ones and shown a reasonable agreement.

  • PDF

Analysis of the Reduction of Detent Force in a Permanent Magnet Linear Synchronous Motor (영구자석형 선형 동기전동기의 디텐트력 저감방식에 관한 특성해석 및 상호 비교)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.757-759
    • /
    • 2000
  • The problem in improving the positioning precision of a permanent magnet linear synchronous motor(PMLSM) is the large detent force caused by the permanent magnet. The detent force is thought to arise from the difference of the position of a permanent magnet end and a tooth position. In this paper, Three methods of reducing detent force is presented The first method is adjusting the width of permanent magnet. The second method is varying the shape of armature teeth. The third method is the arrangement of the permanent magnet end. This paper compares with the ratio of reducing the detent force according to the three methods.

  • PDF

Control Based Reduction of Detent Force for Permanent Magnet Linear Synchronous Motor

  • Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.172-174
    • /
    • 2008
  • The detent force of the permanent magnet linear synchronous motor (PMLSM) is caused by the interaction between the permanent magnet and the iron core of the mover without input current. It is a function of the mover position relative to the stator. This paper proposes a control based method to reduce the detent force for the PMLSM. This detent force that can be predicted by finite element method (FEM) is compensated by injecting the instantaneous current using the field oriented control (FOC) method. Both the simulated and experimental results are reported to validate the effectiveness of this proposed method.

  • PDF

A Study on the magnet Arrangement for vibration reduction and improvement in Starting Characteristic (진동 저감 및 기동 특성 향상을 위한 선형동기전동기의 영구자석 배열)

  • Lee, Seung-Hoon;Ahn, Ho-Jin;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.860-861
    • /
    • 2008
  • This paper deals with the magnet arrangement for vibration reduction and improvement in Starting Characteristic of Permanent Magnet Linear Synchronous Motor (PMLSM). Thrust, detent force, normal force and lateral force are generated in PMLSM. The detent force and lateral force cause the vibration of PMLSM. The detent force and the lateral force are analyzed by using 3-Dimensional Finite Element Method (3-D FEM). The efficiency and vibration of PMLSM are measured by experiment.

  • PDF

Optimal Design of a PMLSM with 9 Pole 10 Slot for Detent Force Reduction (9극 10슬롯 구조의 영구자석 선형 동기 전동기의 디텐트력 저감을 위한 최적설계)

  • Hwang, In-Sung;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.589-595
    • /
    • 2008
  • Detent force of a permanent magnet linear motor(PMLSM) consist of cogging and drag forces, and should be minimized for high precision control purpose applications. This paper shows that the cogging force can be reduced effectively by employing 9 pole 10 slot structure. The drag force is minimized by optimizing the total length and shape of the exterior teeth of armature core simultaneously by using($1+{\lambda}$) evolution strategy coupled with response surface method. After optimization, the optimized PMLSM is proven to reduce 95% and 92.6% of the cogging and total detent forces, respectively, and give 12% and 6.4% higher Back-emf and thrust force, respectively, compared with a conventional 12 pole 9 slot structure under the same condition. Additionally, Simulation results by the proposed optimum design are verified by the experiment results.

Evaluation of Analytical Method for Detent Spring Force Correction (디텐트 스프링 교정을 위한 해석적방법의 적용성 평가)

  • Kim, Sun-Ho;Kwon, Hyuk-Hong;Park, Kyoung-Taik;Jung, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.57-63
    • /
    • 1999
  • A thin metal plate such as detent spring has the shape deformation due to the phenomenon of spring back after press machining and heat treatment process. This requires the correction of spring shape and force in final inspection process. To do correction of the shape deformation the impact force is manually applied to the bended part of detent spring after measuring the shape deformation and spring force. To develop the automatic spring force correction system, applied force of occurring plastic deformation must be derived from the experimental method. But frequent change of spring shape and material makes it difficult to accomplish the experimental method to be applied. This paper describes the analytical method for detent spring force correction system is to be substituted for the experimental method. FEM(Finite Element Method) is used to find the boundary value between elastic and plastic deformation in the analytical method. To confirm the validity of the analytical method, the result of two methods is compared each other at various applied force conditions. It shows that the simulation result of the analytical method is consistent with the result of the experimental method within the error bound ${\pm}$5%. The result of this paper is useful for development of the automatic spring correction system and reduction of the complicated and tedious processes involved in experimental method.

  • PDF

The Design of End Edge Shape for Reduction of Long-Distance Transportation Stationary Discontinuous Armature PMLSM Thrust Ripple with Distributed Winding (장거리 반송용 전기자 분산배치 분포권 PMLSM의 추력맥동 저감을 위한 단부형상 설계)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1675-1680
    • /
    • 2013
  • Recently, the permanent magnet linear synchronous motor as low noise, high speed and high thrust force transportation system has been proposed but this motor causes an increase of material cost because of its characteristic arranging the armature on the full length of transportation lines when this system is applied to the long distance transportation system. Therefore, we suggested discontinuous arrangement method of the armature to solve this problem. However, Detent force which causes thrust force ripple generating noise, vibration and decline of performance is generated when a mover pass between the armatures. Thus, in this paper, we examined characteristic of detent force to reduce the end edge effect according to the end edge teeth's height and auxiliary teeth and suggested the shape that can the most reduce the detent force.