• Title/Summary/Keyword: detection theory

Search Result 507, Processing Time 0.025 seconds

A Study on the Size Evaluation of Circular Flat Flaw with Indication by Straight Beam Inspection of Ultrasonic Wave (초음파(超音波)의 수직탐상법(垂直探傷法)에 의한 경사(傾斜)를 갖는 원형평면결함(圓形平面缺陷)의 크기 평가(評價)에 관한 연구(硏究))

  • Han, Eung-Kyo;Kim, Ki-Joong;Lee, Kook-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 1984
  • In the straight beam inspection of ultrasonic wave, the method for evaluating flaw size by AVG diagram is useful as a method for the quantitative evaluation of results of ultrasonic flaw detection. This study was carried out the measure the size of circular flat flaw with the inclination by straight beam inspection and could be decreased the error of application due to the inclination of flaw by AVG diagram in consideration of correction coefficient. From the result of the experiment, the error by means of the application of experimental values to AVG diagram was increased as the inclination angle grows. Also, it n s increased the error of application as the detecting frequency and diameter of flaw grows in the same inclination angle. In case of diameter of flaw 6mm, AVG diagram could be applied to the inclination angle $3^{\circ}$ for 5 MHz, $7^{\circ}$ for 2.25 MHz, $15^{\circ}C$ for 1 MHz in the range of 20% error and the theory was concided with the experiment to $5^{\circ}C$ for 5 MHz, $10^{\circ}C$ for 2.25 MHz, $15^{\circ}C$ for 1 MHz in the range of 10% error by correction eq. (45) due to the inclination angle. Therefore, it is considered that the results obtained from this study will be somewhat helpful informations for the size evaluation of circular flat flaw with the inclination.

  • PDF

Factors related to the Performance of Mammography Screening among Women with a Family History of Breast Cancer in Korea

  • Oh, Jin-A;Kim, Tae-Hyun;Park, Young-Ok
    • Women's Health Nursing
    • /
    • v.17 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Purpose: Early diagnosis is the primary method aimed at controlling breast cancer. The purpose of this study was to analyze some factors affecting the performance of mammography screening among women with a family history of breast cancer in Korea. Methods: This study applied a descriptive design method through structured self-report questionnaires. The Care Seeking Behavior Theory provided a theoretical framework for the study. Factors measured in this study represent demographic, clinical, and psychosocial variables including anxiety, barriers, utility, habits, perception, and facilitators. A total of 212 participants, of at least 20 years old, were sampled from April 8, 2010 to March 31, 2011. The data was analyzed by logistic regression method using the Statistical Package for the Social Science 18.0 software. Results: Of the 212 participants, 122 women (57.5%) went through mammography screening. The results of the analysis showed that (a) age (Odds Ratio [OR] =1.10, p<.001), (b) facilitating influences (OR=1.83, p=.008), (c) perception of mammography importance (OR=1.92, p=.011), (d) barriers to mammography (OR=0.60, p=.031), and (e) utility of mammography (OR=2.01, p=.050) significantly affect mammography screening. Conclusion: The results underscore the impact that psychosocial variables in obtaining mammography have on adherence to screening. Women with a family history of breast cancer should be given accurate information and recommendation about mammography by healthcare provider and a regular source of healthcare.

Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach

  • Zhang, Yi;Kim, Chul-Woo;Zhang, Lian;Bai, Yongtao;Yang, Hao;Xu, Xiangyang;Zhang, Zhenhao
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.285-299
    • /
    • 2020
  • Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged structural condition.

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

Theoretical Analysis of the Lock-on Range of a Man-portable Air Defense System Under Foggy Conditions with the Radiative-transfer Equation (복사전달방정식을 활용한 안개 조건에서의 휴대용 대공 유도미사일 Lock-on range에 대한 이론적 분석)

  • Seok, In Cheol;Lee, Chang Min;Hahn, Jae W.
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • MANPADS (man-portable air defense system) is a counterweapon system against enemy aircraft, tracking the MWIR (mid-wavelength of infrared) signature of the plume. Under foggy conditions, however, multiple scattering phenomenon caused by the particles affects the MWIR transmittance, and the MANPADS detection performance. Therefore, in this study we analyzed the lock-on range of MANPADS with varying fog conditions and plume characteristics. To analyze the optical extinction properties and transmittance in fog, Mie scattering theory and analytic solution of the radiative-transfer equation are utilized. In addition, we used flare signature as an alternative MWIR light source. We confirmed that the lock-on range could be noticeably reduced under conditions of mist, and proportional to the flare temperature.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.312-318
    • /
    • 2021
  • Lack of knowledge and digital skills is a threat to the information security of the state and society, so the formation and development of organizational culture of information security is extremely important to manage this threat. The purpose of the article is to assess the state of information security of the state and society. The research methodology is based on a quantitative statistical analysis of the information security culture according to the EU-27 2019. The theoretical basis of the study is the theory of defense motivation (PMT), which involves predicting the individual negative consequences of certain events and the desire to minimize them, which determines the motive for protection. The results show the passive behavior of EU citizens in ensuring information security, which is confirmed by the low level of participation in trainings for the development of digital skills and mastery of basic or above basic overall digital skills 56% of the EU population with a deviation of 16%. High risks to information security in the context of damage to information assets, including software and databases, have been identified. Passive behavior of the population also involves the use of standard identification procedures when using the Internet (login, password, SMS). At the same time, 69% of EU citizens are aware of methods of tracking Internet activity and access control capabilities (denial of permission to use personal data, access to geographical location, profile or content on social networking sites or shared online storage, site security checks). Phishing and illegal acquisition of personal data are the biggest threats to EU citizens. It have been identified problems related to information security: restrictions on the purchase of products, Internet banking, provision of personal information, communication, etc. The practical value of this research is the possibility of applying the results in the development of programs of education, training and public awareness of security issues.

Telemedicine Software Application

  • UNGUREANU, Ovidiu Costica;POPESCU, Marius-Constantin;CIOBANU, Daniela;UNGUREANU, Elena;SARLA, Calin Gabriel;CIOBANU, Alina-Elena;TODINCA, Paul
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.171-180
    • /
    • 2021
  • Currently, hospitals and medical practices have a large amount of unstructured information, gathered in time at each ward or practice by physicians in a wide range of medical branches. The data requires processing in order to be able to extract relevant information, which can be used to improve the medical system. It is useful for a physician to have access to a patient's entire medical history when he or she is in an emergency situation, as relevant information can be found about the patient's problems such as: allergies to various medications, personal history, or hereditary collateral conditions etc. If the information exists in a structured form, the detection of diseases based on specific symptoms is much easier, faster and with a higher degree of accuracy. Thus, physicians may investigate certain pathological profiles and conduct cohort clinical trials, including comparing the profile of a particular patient with other similar profiles that already have a confirmed diagnosis. Involving information technology in this field will change so the time which the physicians should spend in front of the computer into a much more beneficial one, providing them with the possibility for more interaction with the patient while listening to the patient's needs. The expert system, described in the paper, is an application for medical diagnostic of the most frequently met conditions, based on logical programming and on the theory of probabilities. The system rationale is a search item in the field basic knowledge on the condition. The web application described in the paper is implemented for the ward of pathological anatomy of a hospital in Romania. It aims to ease the healthcare staff's work, to create a connection of communication at one click between the necessary wards and to reduce the time lost with bureaucratic proceedings. The software (made in PHP programming language, by writing directly in the source code) is developed in order to ease the healthcare staff's activity, being created in a simpler and as elegant way as possible.

A Study on Autonomous Stair-climbing System Using Landing Gear for Stair-climbing Robot (계단 승강 로봇의 계단 승강 시 랜딩기어를 활용한 자율 승강 기법에 관한 연구)

  • Hwang, Hyun-Chang;Lee, Won-Young;Ha, Jong-Hee;Lee, Eung-Hyuck
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.362-370
    • /
    • 2021
  • In this paper, we propose the Autonomous Stair-climbing system based on data from ToF sensors and IMU in developing stair-climbing robots to passive wheelchair users. Autonomous stair-climbing system are controlled by separating the timing of landing gear operation by location and utilizing state machines. To prove the theory, we construct and experiment with standard model stairs. Through an experiment to get the Attack angle, the average error of operating landing gear was 2.19% and the average error of the Attack angle was 2.78%, and the step division and status transition of the autonomous stair-climbing system were verified. As a result, the performance of the proposed techniques will reduce constraints of transportation handicapped.

The Effect of Design Thinking Based Artificial Intelligence Education Programs on Middle School Students' Creative Problem Solving Ability

  • Seung-Ju, Hong;Seong-Won, Kim;Youngjun, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.227-234
    • /
    • 2023
  • In this paper, we developed a design thinking-based artificial intelligence education program for middle school students and applied it to verify the impact on creative problem-solving skills. The inspection tool used the Creative Problem Solving Profile Inventory (CPSPI), an inspection tool for measuring creative thinking type ability based on the CPS theory of Hwasun Lee, Jungmin Pyo, Insoo Choe(2014). CPSPI included the steps of evaluating cognitive preferences and cognitive abilities by supplementing the limitations of existing tests, and sharing and persuading one's ideas with others. Before and after applying the design thinking-based artificial intelligence education program, as a result of analyzing the creative problem-solving ability, it increased significantly in all areas. As a result of analyzing the creative problem-solving ability of middle school students, significant results were found in the areas of Problem Detection and Analysis, Idea Generation, Action plan, Execution, Persuasion and Communication. The effect of design thinking was confirmed as a teaching and learning method to improve creative problem-solving ability in artificial intelligence education.

Tackling range uncertainty in proton therapy: Development and evaluation of a new multi-slit prompt-gamma camera (MSPGC) system

  • Youngmo Ku;Sehoon Choi;Jaeho Cho;Sehyun Jang;Jong Hwi Jeong;Sung Hun Kim;Sungkoo Cho;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3140-3149
    • /
    • 2023
  • In theory, the sharp dose falloff at the distal end of a proton beam allows for high conformal dose to the target. However, conformity has not been fully achieved in practice, primarily due to beam range uncertainty, which is approximately 4% and varies slightly across institutions. To address this issue, we developed a new range verification system prototype: a multi-slit prompt-gamma camera (MSPGC). This system features high prompt-gamma detection sensitivity, an advanced range estimation algorithm, and a precise camera positioning system. We evaluated the range measurement precision of the prototype for single spot beams with varying energies, proton quantities, and positions, as well as for spot-scanning proton beams in a simulated SSPT treatment using a phantom. Our results demonstrated high accuracy (<0.4 mm) in range measurement for the tested beam energies and positions. Measurement precision increased significantly with the number of protons, achieving 1% precision with 5 × 108 protons. For spot-scanning proton beams, the prototype ensured more than 5 × 108 protons per spot with a 7 mm or larger spot aggregation, achieving 1% range measurement precision. Based on these findings, we anticipate that the clinical application of the new prototype will reduce range uncertainty (currently approximately 4%) to 1% or less.