• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.036 seconds

Towards Improved Performance on Plant Disease Recognition with Symptoms Specific Annotation

  • Dong, Jiuqing;Fuentes, Alvaro;Yoon, Sook;Kim, Taehyun;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2022
  • Object detection models have become the current tool of choice for plant disease detection in precision agriculture. Most existing research improves the performance by ameliorating networks and optimizing the loss function. However, the data-centric part of a whole project also needs more investigation. In this paper, we proposed a systematic strategy with three different annotation methods for plant disease detection: local, semi-global, and global label. Experimental results on our paprika disease dataset show that a single class annotation with semi-global boxes may improve accuracy. In addition, we also studied the noise factor during the labeling process. An ablation study shows that annotation noise within 10% is acceptable for keeping good performance. Overall, this data-centric numerical analysis helps us to understand the significance of annotation methods, which provides practitioners a way to obtain higher performance and reduce annotation costs on plant disease detection tasks. Our work encourages researchers to pay more attention to label quality and the essential issues of labeling methods.

3D Object Detection with Low-Density 4D Imaging Radar PCD Data Clustering and Voxel Feature Extraction for Each Cluster (4D 이미징 레이더의 저밀도 PCD 데이터 군집화와 각 군집에 복셀 특징 추출 기법을 적용한 3D 객체 인식 기법)

  • Cha-Young, Oh;Soon-Jae, Gwon;Hyun-Jung, Jung;Gu-Min, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.471-476
    • /
    • 2022
  • In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.

Abnormal Electrocardiogram Signal Detection Based on the BiLSTM Network

  • Asif, Husnain;Choe, Tae-Young
    • International Journal of Contents
    • /
    • v.18 no.2
    • /
    • pp.68-80
    • /
    • 2022
  • The health of the human heart is commonly measured using ECG (Electrocardiography) signals. To identify any anomaly in the human heart, the time-sequence of ECG signals is examined manually by a cardiologist or cardiac electrophysiologist. Lightweight anomaly detection on ECG signals in an embedded system is expected to be popular in the near future, because of the increasing number of heart disease symptoms. Some previous research uses deep learning networks such as LSTM and BiLSTM to detect anomaly signals without any handcrafted feature. Unfortunately, lightweight LSTMs show low precision and heavy LSTMs require heavy computing powers and volumes of labeled dataset for symptom classification. This paper proposes an ECG anomaly detection system based on two level BiLSTM for acceptable precision with lightweight networks, which is lightweight and usable at home. Also, this paper presents a new threshold technique which considers statistics of the current ECG pattern. This paper's proposed model with BiLSTM detects ECG signal anomaly in 0.467 ~ 1.0 F1 score, compared to 0.426 ~ 0.978 F1 score of the similar model with LSTM except one highly noisy dataset.

PZT Impedance-based Damage Detection for Civil Infrastructures (토목 구조물의 PZT Impedance 기반 손상추정기법)

  • S. H. Park;Y. Roh;C. B. Yun;J. H. Yi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.373-380
    • /
    • 2004
  • This paper presents the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The impedance-based damage detection method is based on monitoring the changes in the electrical impedance. Those changes in the electrical impedance are due to the electro-mechanical coupling property of the piezoelectric material and structure. An effective integrated structural health monitoring system must include a statistical process of damage detection that is automated and real time assessment of damage in the structure. Once measured, damage sensitive features from this impedance change can be statistically quantified for various damage cases. The results of the experimental study on three kinds of structural members show that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies. The root mean square (RMS) deviations of impedance functions between before and after damages were also considered as a damage indicator. The subsequent statistical methods using the impedance signature of the PZT sensors were investigated.

  • PDF

An Interactive Multi-Factor User Authentication Framework in Cloud Computing

  • Elsayed Mostafa;M.M. Hassan;Wael Said
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.63-76
    • /
    • 2023
  • Identity and access management in cloud computing is one of the leading significant issues that require various security countermeasures to preserve user privacy. An authentication mechanism is a leading solution to authenticate and verify the identities of cloud users while accessing cloud applications. Building a secured and flexible authentication mechanism in a cloud computing platform is challenging. Authentication techniques can be combined with other security techniques such as intrusion detection systems to maintain a verifiable layer of security. In this paper, we provide an interactive, flexible, and reliable multi-factor authentication mechanisms that are primarily based on a proposed Authentication Method Selector (AMS) technique. The basic idea of AMS is to rely on the user's previous authentication information and user behavior which can be embedded with additional authentication methods according to the organization's requirements. In AMS, the administrator has the ability to add the appropriate authentication method based on the requirements of the organization. Based on these requirements, the administrator will activate and initialize the authentication method that has been added to the authentication pool. An intrusion detection component has been added to apply the users' location and users' default web browser feature. The AMS and intrusion detection components provide a security enhancement to increase the accuracy and efficiency of cloud user identity verification.

Low complexity hybrid layered tabu-likelihood ascent search for large MIMO detection with perfect and estimated channel state information

  • Sourav Chakraborty;Nirmalendu Bikas Sinha;Monojit Mitra
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.418-432
    • /
    • 2023
  • In this work, we proposed a low-complexity hybrid layered tabu-likelihood ascent search (LTLAS) algorithm for large multiple-input multiple-output (MIMO) system. The conventional layered tabu search (LTS) approach involves many partial reactive tabu searches (RTSs), and each RTS requires an initialization and searching phase. In the proposed algorithm, we restricted the upper limit of the number of RTS operations. Once RTS operations exceed the limit, RTS will be replaced by low-complexity likelihood ascent search (LAS) operations. The block-based detection approach is considered to maintain a higher signal-to-noise ratio (SNR) detection performance. An efficient precomputation technique is derived, which can suppress redundant computations. The simulation results show that the bit error rate (BER) performance of the proposed detection method is close to the conventional LTS method. The complexity analysis shows that the proposed method has significantly lower computational complexity than conventional methods. Also, the proposed method can reduce almost 50% of real operations to achieve a BER of 10-3.

Hallucination Detection for Generative Large Language Models Exploiting Consistency and Fact Checking Technique (생성형 거대 언어 모델에서 일관성 확인 및 사실 검증을 활 용한 Hallucination 검출 기법)

  • Myeong Jin;Gun-Woo Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.461-464
    • /
    • 2023
  • 최근 GPT-3 와 LLaMa 같은 생성형 거대 언어모델을 활용한 서비스가 공개되었고, 실제로 많은 사람들이 사용하고 있다. 해당 모델들은 사용자들의 다양한 질문에 대해 유창한 답변을 한다는 이유로 주목받고 있다. 하지만 LLMs 의 답변에는 종종 Inconsistent content 와 non-factual statement 가 존재하며, 이는 사용자들로 하여금 잘못된 정보의 전파 등의 문제를 야기할 수 있다. 이에 논문에서는 동일한 질문에 대한 LLM 의 답변 샘플과 외부 지식을 활용한 Hallucination Detection 방법을 제안한다. 제안한 방법은 동일한 질문에 대한 LLM 의 답변들을 이용해 일관성 점수(Consistency score)를 계산한다. 거기에 외부 지식을 이용한 사실검증을 통해 사실성 점수(Factuality score)를 계산한다. 계산된 일관성 점수와 사실성 점수를 활용하여 문장 수준의 Hallucination Detection 을 가능하게 했다. 실험에는 GPT-3 를 이용하여 WikiBio dataset 에 있는 인물에 대한 passage 를 생성한 데이터셋을 사용하였으며, 우리는 해당 방법을 통해 문장 수준에서의 Hallucination Detection 성능이 baseline 보다 AUC-PR scores 에서 향상됨을 보였다.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

Identification and Detection of Emotion Using Probabilistic Output SVM (확률출력 SVM을 이용한 감정식별 및 감정검출)

  • Cho, Hoon-Young;Jung, Gue-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.375-382
    • /
    • 2006
  • This paper is about how to identify emotional information and how to detect a specific emotion from speech signals. For emotion identification and detection task. we use long-term acoustic feature parameters and select the optimal Parameters using the feature selection technique based on F-score. We transform the conventional SVM into probabilistic output SVM for our emotion identification and detection system. In this paper we propose three approximation methods for log-likelihoods in a hypothesis test and compare the performance of those three methods. Experimental results using the SUSAS database showed the effectiveness of both feature selection and Probabilistic output SVM in the emotion identification task. The proposed methods could detect anger emotion with 91.3% correctness.

Leveraging Deep Learning and Farmland Fertility Algorithm for Automated Rice Pest Detection and Classification Model

  • Hussain. A;Balaji Srikaanth. P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.959-979
    • /
    • 2024
  • Rice pest identification is essential in modern agriculture for the health of rice crops. As global rice consumption rises, yields and quality must be maintained. Various methodologies were employed to identify pests, encompassing sensor-based technologies, deep learning, and remote sensing models. Visual inspection by professionals and farmers remains essential, but integrating technology such as satellites, IoT-based sensors, and drones enhances efficiency and accuracy. A computer vision system processes images to detect pests automatically. It gives real-time data for proactive and targeted pest management. With this motive in mind, this research provides a novel farmland fertility algorithm with a deep learning-based automated rice pest detection and classification (FFADL-ARPDC) technique. The FFADL-ARPDC approach classifies rice pests from rice plant images. Before processing, FFADL-ARPDC removes noise and enhances contrast using bilateral filtering (BF). Additionally, rice crop images are processed using the NASNetLarge deep learning architecture to extract image features. The FFA is used for hyperparameter tweaking to optimise the model performance of the NASNetLarge, which aids in enhancing classification performance. Using an Elman recurrent neural network (ERNN), the model accurately categorises 14 types of pests. The FFADL-ARPDC approach is thoroughly evaluated using a benchmark dataset available in the public repository. With an accuracy of 97.58, the FFADL-ARPDC model exceeds existing pest detection methods.