• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.029 seconds

Vision-sensor-based Drivable Area Detection Technique for Environments with Changes in Road Elevation and Vegetation (도로의 높낮이 변화와 초목이 존재하는 환경에서의 비전 센서 기반)

  • Lee, Sangjae;Hyun, Jongkil;Kwon, Yeon Soo;Shim, Jae Hoon;Moon, Byungin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.94-100
    • /
    • 2019
  • Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.

Automatic Malware Detection Rule Generation and Verification System (악성코드 침입탐지시스템 탐지규칙 자동생성 및 검증시스템)

  • Kim, Sungho;Lee, Suchul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.9-19
    • /
    • 2019
  • Service and users over the Internet are increasing rapidly. Cyber attacks are also increasing. As a result, information leakage and financial damage are occurring. Government, public agencies, and companies are using security systems that use signature-based detection rules to respond to known malicious codes. However, it takes a long time to generate and validate signature-based detection rules. In this paper, we propose and develop signature based detection rule generation and verification systems using the signature extraction scheme developed based on the LDA(latent Dirichlet allocation) algorithm and the traffic analysis technique. Experimental results show that detection rules are generated and verified much more quickly than before.

PointNet and RandLA-Net Algorithms for Object Detection Using 3D Point Clouds (3차원 포인트 클라우드 데이터를 활용한 객체 탐지 기법인 PointNet과 RandLA-Net)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.330-337
    • /
    • 2022
  • Research on object detection algorithms using 2D data has already progressed to the level of commercialization and is being applied to various manufacturing industries. Object detection technology using 2D data has an effective advantage, there are technical limitations to accurate data generation and analysis. Since 2D data is two-axis data without a sense of depth, ambiguity arises when approached from a practical point of view. Advanced countries such as the United States are leading 3D data collection and research using 3D laser scanners. Existing processing and detection algorithms such as ICP and RANSAC show high accuracy, but are used as a processing speed problem in the processing of large-scale point cloud data. In this study, PointNet a representative technique for detecting objects using widely used 3D point cloud data is analyzed and described. And RandLA-Net, which overcomes the limitations of PointNet's performance and object prediction accuracy, is described a review of detection technology using point cloud data was conducted.

Intrusion Detection System Utilizing Stack Ensemble and Adjacent Netflow (스텍앙상블과 인접 넷플로우를 활용한 침입 탐지 시스템)

  • Ji-Hyun Sung;Kwon-Yong Lee;Sang-Won Lee;Min-Jae Seok;Se-Rin Kim;Harksu Cho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1033-1042
    • /
    • 2023
  • This paper proposes a network intrusion detection system that identifies abnormal flows within the network. The majority of datasets commonly used in research lack time-series information, making it challenging to improve detection rates for attacks with fewer instances due to a scarcity of sample data. However, there is insufficient research regarding detection approaches. In this study, we build upon previous research by using the Artificial neural network(ANN) model and a stack ensemble technique in our approach. To address the aforementioned issues, we incorporate temporal information by leveraging adjacent flows and enhance the learning of samples from sparse attacks, thereby improving both the overall detection rate and the detection rate for sparse attacks.

Double-Talk Detection Based on Soft Decision for Acoustic Echo Suppression (음향학적 반향 제거를 위한 Soft Decision 기반의 동시통화 검출)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.285-289
    • /
    • 2009
  • In this paper, we propose a novel double-talk detection (DTD) technique based on soft decision in the frequency domain. In the proposed method, global near-end speech presence probability (GNSPP) considering the statistical model assumption and voice activity detection (VAD) decision of the near-end and far-end signal are applied to the DTD algorithm in the frequency domain instead of the traditional hard decision scheme using cross-correlation coefficients. The performance of the proposed algorithm is evaluated by the objective test under various environments, and yields better results compared with the conventional scheme.

A Novel Framework for APT Attack Detection Based on Network Traffic

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.52-60
    • /
    • 2024
  • APT (Advanced Persistent Threat) attack is a dangerous, targeted attack form with clear targets. APT attack campaigns have huge consequences. Therefore, the problem of researching and developing the APT attack detection solution is very urgent and necessary nowadays. On the other hand, no matter how advanced the APT attack, it has clear processes and lifecycles. Taking advantage of this point, security experts recommend that could develop APT attack detection solutions for each of their life cycles and processes. In APT attacks, hackers often use phishing techniques to perform attacks and steal data. If this attack and phishing phase is detected, the entire APT attack campaign will be crash. Therefore, it is necessary to research and deploy technology and solutions that could detect early the APT attack when it is in the stages of attacking and stealing data. This paper proposes an APT attack detection framework based on the Network traffic analysis technique using open-source tools and deep learning models. This research focuses on analyzing Network traffic into different components, then finds ways to extract abnormal behaviors on those components, and finally uses deep learning algorithms to classify Network traffic based on the extracted abnormal behaviors. The abnormal behavior analysis process is presented in detail in section III.A of the paper. The APT attack detection method based on Network traffic is presented in section III.B of this paper. Finally, the experimental process of the proposal is performed in section IV of the paper.

Relative humidity prediction of a leakage area for small RCS leakage quantification by applying the Bi-LSTM neural networks

  • Sang Hyun Lee;Hye Seon Jo;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1725-1732
    • /
    • 2024
  • In nuclear power plants, reactor coolant leakage can occur due to various reasons. Early detection of leaks is crucial for maintaining the safety of nuclear power plants. Currently, a detection system is being developed in Korea to identify reactor coolant system (RCS) leakage of less than 0.5 gpm. Typically, RCS leaks are detected by monitoring temperature, humidity, and radioactivity in the containment, and a water level in the sump. However, detecting small leaks proves challenging because the resulting changes in the containment humidity and temperature, and the sump water level are minimal. To address these issues and improve leak detection speed, it is necessary to quantify the leaks and develop an artificial intelligence-based leak detection system. In this study, we employed bidirectional long short-term memory, which are types of neural networks used in artificial intelligence, to predict the relative humidity in the leakage area for leak quantification. Additionally, an optimization technique was implemented to reduce learning time and enhance prediction performance. Through evaluation of the developed artificial intelligence model's prediction accuracy, we expect it to be valuable for future leak detection systems by accurately predicting the relative humidity in a leakage area.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications

  • Chatchai Rodwihok;Tran Van Tam;Won Mook Choi;Mayulee Suwannakaew;Sang Woon Woo;Duangmanee Wongratanaphisan;Han S. Kim
    • Nanomaterials
    • /
    • v.12 no.4
    • /
    • pp.702-714
    • /
    • 2022
  • Graphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe3+) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups. The GQDs exhibited a relatively high quantum yield of approximately 37%. Prominent blue emission under UV excitation and highly selective PL quenching for Fe3+ were observed. Furthermore, Fe3+ could be detected at concentrations as low as 0.28 µM (limit of detection), allowing for high sensitivity toward Fe3+ detection in tap and drinking water samples. In the bio-imaging experiment, the GQDs exhibited a low cytotoxicity for the HeLa cells, and they were clearly illuminated at an excitation wavelength of 405 nm. These results can serve as the basis for developing an environment-friendly, simple, and cost-effective approach of using food waste by converting them into photoluminescent nanomaterials for the detection of metal ions in field water samples and biological cellular studies.

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Majid Gholhaki;Borhan Mirzaei;Mohtasham Khanahmadi;Gholamreza Ghodrati Amiri;Omid Rezaifar
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.