• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.034 seconds

Effective Watermark Detection Using Asymmetric Thresholds (비대칭 임계치를 이용한 효과적인 워터마크 검출 방법)

  • Shin, Chang-Doon;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.619-628
    • /
    • 2003
  • In this paper, an effective watermark detection technique in the wavelet transform domain is proposed. In this proposed method, the image is 2-level wavelet transformed, and then the watermark with a binary logo is embedded into middle band except baseband and high band to consider Invisibility and robustness. In this paper, we use an asymmetric thresholds watermarking (ATW) in which detection threshold is higher than inserting threshold in order to enhance watermark detection ratio in attacked images. In watermark detection phase, the detection value is not changed when the difference of the selected wavelet neighboring coefficient pairs Is smaller than specific value. The experimental results show that the proposed method has good quality and is robust to various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, etc.

Tsunami-induced Change Detection Using SAR Intensity and Texture Information Based on the Generalized Gaussian Mixture Model

  • Jung, Min-young;Kim, Yong-il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • The remote sensing technique using SAR data have many advantages when applied to the disaster site due to its wide coverage and all-weather acquisition availability. Although a single-pol (polarimetric) SAR image cannot represent the land surface better than a quad-pol SAR image can, single-pol SAR data are worth using for disaster-induced change detection. In this paper, an automatic change detection method based on a mixture of GGDs (generalized Gaussian distribution) is proposed, and usability of the textural features and intensity is evaluated by using the proposed method. Three ALOS/PALSAR images were used in the experiments, and the study site was Norita City, which was affected by the 2011 Tohoku earthquake. The experiment results showed that the proposed automatic change detection method is practical for disaster sites where the large areas change. The intensity information is useful for detecting disaster-induced changes with a 68.3% g-mean, but the texture information is not. The autocorrelation and correlation show the interesting implication that they tend not to extract agricultural areas in the change detection map. Therefore, the final tsunami-induced change map is produced by the combination of three maps: one is derived from the intensity information and used as an initial map, and the others are derived from the textural information and used as auxiliary data.

GEP-based Framework for Immune-Inspired Intrusion Detection

  • Tang, Wan;Peng, Limei;Yang, Ximin;Xie, Xia;Cao, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1273-1293
    • /
    • 2010
  • Immune-inspired intrusion detection is a promising technology for network security, and well known for its diversity, adaptation, self-tolerance, etc. However, scalability and coverage are two major drawbacks of the immune-inspired intrusion detection systems (IIDSes). In this paper, we propose an IIDS framework, named GEP-IIDS, with improved basic system elements to address these two problems. First, an additional bio-inspired technique, gene expression programming (GEP), is introduced in detector (corresponding to detection rules) representation. In addition, inspired by the avidity model of immunology, new avidity/affinity functions taking the priority of attributes into account are given. Based on the above two improved elements, we also propose a novel immune algorithm that is capable of integrating two bio-inspired mechanisms (i.e., negative selection and positive selection) by using a balance factor. Finally, a pruning algorithm is given to reduce redundant detectors that consume footprint and detection time but do not contribute to improving performance. Our experimental results show the feasibility and effectiveness of our solution to handle the scalability and coverage problems of IIDS.

A Study on the Intrusion Detection System's Nodes Scheduling Using Genetic Algorithm in Sensor Networks (센서네트워크에서 유전자 알고리즘을 이용한 침입탐지시스템 노드 스케줄링 연구)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2171-2180
    • /
    • 2011
  • Security is a significant concern for many sensor network applications. Intrusion detection is one method of defending against attacks. However, standard intrusion detection techniques are not suitable for sensor networks with limited resources. In this paper, propose a new method for selecting and managing the detect nodes in IDS(intrusion detection system) for anomaly detection in sensor networks and the node scheduling technique for maximizing the IDS's lifetime. Using the genetic algorithm, developed the solutions for suggested optimization equation and verify the effectiveness of proposed methods by simulations.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

Multimedia Watermark Detection Algorithm Based on Bayes Decision Theory (Bayes 판단 이론 기반 멀티미디어 워터마크 검출 알고리즘)

  • 권성근;이석환;김병주;권기구;하인성;권기룡;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.695-704
    • /
    • 2002
  • Watermark detection plays a crucial role in multimedia copyright protection and has traditionally been tackled using correlation-based algorithms. However, correlation-based detection is not actually the best choice, as it does not utilize the distributional characteristics of the image being marked. Accordingly, an efficient watermark detection scheme for DWT coefficients is proposed as optimal for non-additive schemes. Based on the statistical decision theory, the proposed method is derived according to Bayes decision theory, the Neyman-Pearson criterion, and the distribution of the DWT coefficients, thereby minimizing the missed detection probability subject to a given false alarm probability. The proposed method was tested in the context of robustness, and the results confirmed the superiority of the proposed technique over conventional correlation-based detection method.

Watermark Detection Algorithm Using Statistical Decision Theory (통계적 판단 이론을 이용한 워터마크 검출 알고리즘)

  • 권성근;김병주;이석환;권기구;권기용;이건일
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.39-49
    • /
    • 2003
  • Watermark detection has a crucial role in copyright protection of and authentication for multimedia and has classically been tackled by means of correlation-based algorithms. Nevertheless, when watermark embedding does not obey an additive rule, correlation-based detection is not the optimum choice. So a new detection algorithm is proposed which is optimum for non-additive watermark embedding. By relying on statistical decision theory, the proposed method is derived according to the Bayes decision theory, Neyman-Pearson criterion, and distribution of wavelet coefficients, thus permitting to minimize the missed detection probability subject to a given false detection probability. The superiority of the proposed method has been tested from a robustness perspective. The results confirm the superiority of the proposed technique over classical correlation- based method.

A Study on Edge Detection Method using Modified Directional Masks (변형된 방향성 마스크를 이용한 에지검출 방법에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2779-2785
    • /
    • 2014
  • Edge Detection is a technique that obtains the particular information of the image using the brightness variation of pixel values and utilized for preprocessing in various image processing sectors. The conventional edge detection methods such as Sobel, Prewitt and Roberts are processed by applying the same weighted value to the entire pixels regardless of pixel distrbution and provides somewhat insufficient edge detection results. therefore, this paper has proposed an edge detection method considering the direction and magnitute of pixels by applying a modified directional mask.

Face Detection using Color Information and AdaBoost Algorithm (색상정보와 AdaBoost 알고리즘을 이용한 얼굴검출)

  • Na, Jong-Won;Kang, Dae-Wook;Bae, Jong-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.843-848
    • /
    • 2008
  • Most of face detection technique uses information from the face of the movement. The traditional face detection method is to use difference picture method ate used to detect movement. However, most do not consider this mathematical approach using real-time or real-time implementation of the algorithm is complicated, not easy. This paper, the first to detect real-time facial image is converted YCbCr and RGB video input. Next, you convert the difference between video images of two adjacent to obtain and then to conduct Glassfire Labeling. Labeling value compared to the threshold behavior Area recognizes and converts video extracts. Actions to convert video to conduct face detection, and detection of facial characteristics required for the extraction and use of AdaBoost algorithm.

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.