Recently efforts to extract information about forests by using remote sensing techniques for efficient forest management have progressed actively. In terms of extraction of tree information using single remote sensing data, however, the accuracy of tree recognition and the quantity of extracted information is limited. The objective of this study is to carry out tree modeling in domestic environment applying the latest core technique for tree modeling using color aerial photographs and LiDAR data and to estimate the result of tree modeling. A small-scale coniferous forest was investigated in Daejeon. It was 0.77 that the $R^2$ of accuracy test of tree numbers that estimated with color aerial photography and LiDAR data. In terms of tree height, there was no difference between the estimated value and the field measurements in the case of the group accuracy test of the recently unchanged area. Moreover $R^2$ was 0.83 in the case of the individual accuracy test.
The development of preneoplastic and neoplastic squamous cell proliferations of body sites such as the skin, female lower genital tract, and larynx is strongly associated with specific types of human papillomaviruses (HPV). Antitumor $CD^{8+}$ cells recognize peptide antigens presented on the surface of tumor cells by major histocompatibility complex (MHC) class I molecules. The MHC class I molecule is a heterodimer composed of an integral membrane glycoprotein designated the alpha chain and a noncovalently associated, soluble protein called beta-2-microglobulin( $\beta$ -2-m). Loss of $\beta$-2-m generally eliminates antigen recognition by antitumor $CD^{8+}$ T cells. We evaluated the expression of $\beta$-2-m as a potential means of tumor escape from immune recognition and the presence of HPV DNA as a cause of laryngeal squamous cell carcinomas (SCCs). Laryngeal SCCs (n=39) were analyzed for MHC class I expression by immunohistochemistry and for presence of HPV by in situ hybridization technique. The results were as follows : 1) HPV DNA was detected in 10 (25.64%) out of 39 cases in laryngeal squamous cell carcinomas. 2) MHC class I down-regulation (heterogenous and negative expression) in HPV positive lesions was higher than HPV negative lesions. 3) The expression of MHC class I was related to cellular differentiation regardless of T-stage and nodal involvement. In conclusion, HPV was thought to be the etiological factor of SCC of larynx, and we found that the down-regulation of MHC class I was a common phenomenon In laryngeal SCC and may provide a way for tumor cells to escape from immune surveillance.
As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.
Youn, Ju Min;Jang, Yoon Mi;Yim, Eui Soon;Kim, Seong Lyong;Kang, Yong
Journal of the Korean Applied Science and Technology
/
v.35
no.4
/
pp.1260-1268
/
2018
To improve fuel performance and specific characteristics of long storage and moving through fuel systems additives should be added in kerosene type aviation turbine fuel (AVTUR) such as antioxidant, fuel system icing inhibitor (FSII), electric conductivity improvers and so on. The dosage of additives has to be analyzed qualitatively and quantitatively due to inspect the quality of abnormal fuel and distinguish other petroleum products. Multi-dimensional GC-MS (MDGC-MS) with Deans switching technique are applied the determination of antioxidant and FSII, which are added with AVTUR containing complex mixture of hydrocarbons. Antioxidant and FSII in the range of 2.5-20 mg/L was quantitatively and qualitatively analyzed using MDGC-MS and the detection limit was about twice as low as that of the 1-dimensional GC-MS results. The method in this study has been higher peak resolution compared with GC-MS and could be simultaneously analyzed different two additives without sample pre-treatment.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.4
/
pp.35-42
/
2019
Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.
Detection of subtle ground deformation of volcanoes plays an important role in evaluating the risk and possibility of volcanic eruptions. Ground-fixed observation equipment is difficult to maintain and cost-inefficient. In contrast, satellite remote sensing can regularly monitor at low cost. In this paper, following the study of Chadwick et al. (2006), which applied the interferometric SAR (InSAR) technique to the Sierra Negra volcano, Galapagos. In order to investigate the deformation of the volcano before 2005 eruption, the recent activities of this volcano were analyzed using Sentinel-1, the latest SAR satellite. We obtained the descending mode Sentinel-1A SAR data from January 2017 to January 2018, applied the Persistent Scatter InSAR, and estimated the depth and expansion quantity of magma in recent years through the Mogi model. As a result, it was confirmed that the activity pattern of volcano prior to the eruption in June 2018 was similar to the pattern before the eruption in 2005 and was successful in estimating the depth and expansion amount. The results of this study suggest that satellite SAR can characterize the activity patterns of volcano and can be possibly used for early monitoring of volcanic eruption.
Today's unmanned technology, which is being used in various industries, is expected to be able to make autonomous judgements as autonomous technology matures, in the long run aspects. In order to improve the usability of unmanned system in the military field, it is necessary to develop a technique for systematically and quantitatively analyzing the efficiency and effectiveness of the unmanned system by means of a substitute for the tasks performed by humans. In this paper, we propose the method of representing rule-based tactical behavior and modeling manned and unmanned reconnaissance agents that can effectively analyze the path alternatives which is required for the future armored cavalry to establish a reconnaissance mission plan. First, we model the unmanned ground vehicle, small tactical vehicle, and combatant as an agent concept. Next, we implement the proposed agent behavior rules, e.g., maneuver, detection, route determination, and combatant's dismount point selection, by NetLogo. Considering the conditions of maneuver, enemy threat elements, reconnaissance assets, appropriate routes are automatically selected on the operation area. It is expected that it will be useful in analyzing unmanned ground system effects by calculating reconnaissance conducted area, time, and combat contribution ratio on the route.
Journal of the Korean Society of International Agriculture
/
v.30
no.4
/
pp.339-346
/
2018
Cyanazine is a member of the triazine family of herbicides. Cyanazine is used as a pre- and post-emergence herbicide for the control of annual grasses and broadleaf weeds. This experiment was conducted to establish a determination method for cyanazine, as domestic unregistered pesticide, residue in major agricultural commodities using HPLC-DAD/MS. Cyanazine was extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice and soybean. The extract was diluted with saline water and partitioned to dichloromethane for remove polar extractive in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized florisil column chromatography. On a $C_{18}$ column in HPLC, cyanazine was successfully separated from co-extractives of sample, and sensitively quantitated by diode array detection at 220 nm. Accuracy and precision of the proposed method was validated by the recovery experiment on every major agricultural commodity samples fortified with cyanazine at 3 concentration levels per agricultural commodity in each triplication. Mean recoveries were ranged from 83.6 to 93.3% in five major representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation(LOQ) of cyanazine was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method using LC/MS with selected-ion monitoring(SIM) technique was also provided to clearly identify the suspected residue.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.93-103
/
2021
Despite the efforts of financial authorities in conducting the direct management and supervision of collection agents and bond-collecting guideline, the illegal and unfair collection of debts still exist. To effectively prevent such illegal and unfair debt collection activities, we need a method for strengthening the monitoring of illegal collection activities even with little manpower using technologies such as unstructured data machine learning. In this study, we propose a classification model for illegal debt collection that combine machine learning such as Support Vector Machine (SVM) with a rule-based technique that obtains the collection transcript of loan companies and converts them into text data to identify illegal activities. Moreover, the study also compares how accurate identification was made in accordance with the machine learning algorithm. The study shows that a case of using the combination of the rule-based illegal rules and machine learning for classification has higher accuracy than the classification model of the previous study that applied only machine learning. This study is the first attempt to classify illegalities by combining rule-based illegal detection rules with machine learning. If further research will be conducted to improve the model's completeness, it will greatly contribute in preventing consumer damage from illegal debt collection activities.
Choi, Jae Sik;Choi, Jae U;Shim, Ju Yong;Lee, Mu Chul
Korean Chemical Engineering Research
/
v.59
no.1
/
pp.68-76
/
2021
As hazardous chemicals are releasing in process industries such as chemical & petro-chemical plants, the importance of initial responses has been always emphasized. However, little attention of quantitative analysis of the consequence by different initial responses during releasing of the chemicals has been done. The main objective of current paper is to investigate the effects of initial responses for the release accidents of hydrofluoric acid. For this, a simplified equation that can easily calculate the effect distance by varying concentrations of hydrofluoric acid was firstly deduced. In addition, a causal loops for the initial response steps using the system dynamics technique was constructed during release of 50% hydrofluoric acid. The effect distances according to different scenarios of the initial actions were also quantitatively analyzed by applying the simplified equation to the causal map. As a result, the highest reduction rate on the maximum effect distance was obtained with 'start time of action after leak detection' being about 87% while the lowest was 'arrival time of professional response team' being about 50%, as expected. It is expected that the results gained from the current study can be helpful as of basics of the initial response to the workplace, dealing with the hydrofluoric acid.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.