• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.031 seconds

An Edge Detection Algorithm using Modified Mask in AWGN Environment (AWGN 환경에서 변형된 마스크를 이용한 에지 검출 알고리즘)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.892-894
    • /
    • 2013
  • Edge has been utilized in various application fields with development of technique of digital image processing. In conventional edge detection methods, there are some methods using mask including Sobel, Prewitt, Roberts and Laplacian operator. Those methods are that implement is simple but generates errors of edge detection in images added AWGN(additive white Gaussian noise). Therefore, to compensate the defect of those methods, in this paper, an edge detection algorithm using modified mask is proposed, and it showed superior edge detection property in AWGN.

  • PDF

A Study on Visual Saliency Detection in Infrared Images Using Boolean Map Approach

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1183-1195
    • /
    • 2020
  • Visual saliency detection is an essential task because it is an important part of various vision-based applications. There are many techniques for saliency detection in color images. However, the number of methods for saliency detection in infrared images is limited. In this paper, we introduce a simple approach for saliency detection in infrared images based on the thresholding technique. The input image is thresholded into several Boolean maps, and an initial saliency map is calculated as a weighted sum of the created Boolean maps. The initial map is further refined by using thresholding, morphology operation, and a Gaussian filter to produce the final, high-quality saliency map. The experiment showed that the proposed method has high performance when applied to real-life data.

A New Efficient Impulse Noise Detection based on Rank Estimation

  • Oh, Jin-Sung;Kim, You-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • In this paper, we present a new impulsive noise detection technique. To remove the impulse noise without detail loss, only corrupted pixels must be filtered. In order to identify the corrupted pixels, a new impulse detector based on rank and value estimations of the current pixel is proposed. Based on the rank and value estimations of the current pixel, the new proposed method provides excellent statistics for detecting an impulse noise while reducing the probability of detecting image details as impulses. The proposed detection is efficient and can be used with any noise removal filter. Simulation results show that the proposed method significantly outperforms many other well-known detection techniques in terms of image restoration and noise detection.

  • PDF

Specific Material Detection with Similar Colors using Feature Selection and Band Ratio in Hyperspectral Image (초분광 영상 특징선택과 밴드비 기법을 이용한 유사색상의 특이재질 검출기법)

  • Shim, Min-Sheob;Kim, Sungho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1081-1088
    • /
    • 2013
  • Hyperspectral cameras acquire reflectance values at many different wavelength bands. Dimensions tend to increase because spectral information is stored in each pixel. Several attempts have been made to reduce dimensional problems such as the feature selection using Adaboost and dimension reduction using the Simulated Annealing technique. We propose a novel material detection method that consists of four steps: feature band selection, feature extraction, SVM (Support Vector Machine) learning, and target and specific region detection. It is a combination of the band ratio method and Simulated Annealing algorithm based on detection rate. The experimental results validate the effectiveness of the proposed feature selection and band ratio method.

A Novel Technique of Topic Detection for On-line Text Documents: A Topic Tree-based Approach (온라인 텍스트문서의 계층적 트리 기반 주제탐색 기법)

  • Xuan, Man;Kim, Han-Joon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.396-399
    • /
    • 2012
  • Topic detection is a problem of discovering the topics of online publishing documents. For topic detection, it is important to extract correct topic words and to show the topical words easily to understand. We consider a topic tree-based approach to more effectively and more briefly show the result of topic detection for online text documents. In this paper, to achieve the topic tree-based topic detection, we propose a new term weighting method, called CTF-CDF-IDF, which is simple yet effective. Moreover, we have modified a conventional clustering method, which we call incremental k-medoids algorithm. Our experimental results with Reuters-21578 and Google news collections show that the proposed method is very useful for topic detection.

A Distance-based Outlier Detection Method using Landmarks in High Dimensional Data (고차원 데이터에서 랜드마크를 이용한 거리 기반 이상치 탐지 방법)

  • Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1242-1250
    • /
    • 2021
  • Detection of outliers deviating normal data distribution in high dimensional data is an important technique in many application areas. In this paper, a distance-based outlier detection method using landmarks in high dimensional data is proposed. Given normal training data, the k-means clustering method is applied for the training data in order to extract the centers of the clusters as landmarks which represent normal data distribution. For a test data sample, the distance to the nearest landmark gives the outlier score. In the experiments using high dimensional data such as images and documents, it was shown that the proposed method based on the landmarks of one-tenth of training data can give the comparable outlier detection performance while reducing the time complexity greatly in the testing stage.

BM3D and Deep Image Prior based Denoising for the Defense against Adversarial Attacks on Malware Detection Networks

  • Sandra, Kumi;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.163-171
    • /
    • 2021
  • Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.

Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique (램파 혼합 기법을 이용한 알루미늄 합금의 부식 결함 검출에 대한 실험 연구)

  • Choi, Heeung;Lee, Jaesun;Cho, Younho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

An Anomalous Host Detection Technique using Traffic Dispersion Graphs (트래픽 분산 그래프를 이용한 이상 호스트 탐지 기법)

  • Kim, Jung-Hyun;Won, You-Jip;Ahn, Soo-Han
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.69-79
    • /
    • 2009
  • Today's Internet is one of the necessaries of our life. Anomalies of the Internet provoke social problems. For that reason, Internet Measurement which studies characteristics on Internet traffic attracts pubic attention. Recently, Traffic Dispersion Graph (TDG), a novel traffic analysis method, was proposed. The TDG is not a statistical analysis method but a graphical visualization method on interactions among network components. In this paper, we propose a new anomaly detection paradigm and its technique using TDG. The existing studies have focused on detecting anomalous packets of flows. On the other hand, we focus on detecting the sources of anomalous traffic. To realize our paradigm, we designed the TDG Clustering method. Through this method, we could classify anomalous hosts infected by various worm viruses. We obtained normal traffic through dropping traffic of the anomalous hosts. Especially, we expect that the TDG clustering method can be applied to real-time anomaly detection because calculations of the method are fast.