• 제목/요약/키워드: detection technique

검색결과 4,102건 처리시간 0.034초

Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm (사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지)

  • Cha, Byung-Rae;Kim, Hyung-Jong;Park, Bong-Gu;Cho, Hyug-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제15권2호
    • /
    • pp.13-22
    • /
    • 2005
  • To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.

Semi-supervised based Unknown Attack Detection in EDR Environment

  • Hwang, Chanwoong;Kim, Doyeon;Lee, Taejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4909-4926
    • /
    • 2020
  • Cyberattacks penetrate the server and perform various malicious acts such as stealing confidential information, destroying systems, and exposing personal information. To achieve this, attackers perform various malicious actions by infecting endpoints and accessing the internal network. However, the current countermeasures are only anti-viruses that operate in a signature or pattern manner, allowing initial unknown attacks. Endpoint Detection and Response (EDR) technology is focused on providing visibility, and strong countermeasures are lacking. If you fail to respond to the initial attack, it is difficult to respond additionally because malicious behavior like Advanced Persistent Threat (APT) attack does not occur immediately, but occurs over a long period of time. In this paper, we propose a technique that detects an unknown attack using an event log without prior knowledge, although the initial response failed with anti-virus. The proposed technology uses a combination of AutoEncoder and 1D CNN (1-Dimention Convolutional Neural Network) based on semi-supervised learning. The experiment trained a dataset collected over a month in a real-world commercial endpoint environment, and tested the data collected over the next month. As a result of the experiment, 37 unknown attacks were detected in the event log collected for one month in the actual commercial endpoint environment, and 26 of them were verified as malicious through VirusTotal (VT). In the future, it is expected that the proposed model will be applied to EDR technology to form a secure endpoint environment and reduce time and labor costs to effectively detect unknown attacks.

Development of Pretreatment Method for Analysis of Vitamin B12 in Cereal Infant Formula using Immunoaffinity Chromatography and High-Performance Liquid Chromatography

  • Park, Jung Min;Koh, Jong Ho;Kim, Jin Man
    • Food Science of Animal Resources
    • /
    • 제41권2호
    • /
    • pp.335-342
    • /
    • 2021
  • Vitamin B12 deficiency may lead to serious health issues in both infants and adults. A simple analytical method involving sample pretreatment with enzyme, followed by cyanide addition under acidic conditions; separation on an immunoaffinity column; and high-performance liquid chromatography (HPLC) was developed for the rapid detection and quantitation of vitamin B12 in powdered milk. Detection limit and powdered milk recovery were determined by quantitative analysis. The limits of detection and quantitation were 2.71 and 8.21 ㎍/L, respectively. Relative standard deviations of the intra-day and inter-day precisions varied in the ranges of 0.98%-5.31% and 2.16%-3.90%, respectively. Recovery of the analysis varied in the range of 83.41%-106.57%, suggesting that the values were acceptable. Additionally, vitamin B12 content and recovery in SRM 1849a were 54.10 ㎍/kg and 112.24%, respectively. Our results suggested that the analytical method, including the sample pretreatment step, was valid. This analytical method can be implemented in many laboratory-scale experiments that seek to save time and labor. Therefore, this study shows that immunoaffinity-HPLC/ultraviolet is an acceptable technique for constructing a reliable database on vitamin B12 in powdered milk containing starch as well as protein and/or fat in high amounts.

Analysis of Checkpointing Model with Instantaneous Error Detection (즉각적 오류 감지가 가능한 경우의 체크포인팅 모형 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제26권1호
    • /
    • pp.170-175
    • /
    • 2022
  • Reactive failure management techniques are required to mitigate the impact of errors in high performance computing. Checkpoint is the standard recovery technique for coping with errors. An application employing checkpoints periodically saves its state, so that when an error occurs while some task is executing, the application is rolled back to its last checkpointed task and resumes execution from that task onward. In this paper, assuming the time-to-errors are independent each other and generally distributed, we analyze the checkpointing model with instantaneous error detection. The conventional assumption that two or more errors do not take place between two consecutive checkpoints is removed. Given the checkpointing time, down-time, and recovery time, we derive the reliability of the checkpointing model. When the time-to-error follows an exponential distribution, we obtain the optimal checkpointing interval to achieve the maximum reliability.

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

Damage detection of bridges based on spectral sub-band features and hybrid modeling of PCA and KPCA methods

  • Bisheh, Hossein Babajanian;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.179-200
    • /
    • 2022
  • This paper proposes a data-driven methodology for online early damage identification under changing environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are proposed as damage-sensitive features to extract damage information from measured structural responses. Second, hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations.

Bolt looseness detection and localization using time reversal signal and neural network techniques

  • Duan, Yuanfeng;Sui, Xiaodong;Tang, Zhifeng;Yun, Chungbang
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.397-410
    • /
    • 2022
  • It is essential to monitor the working conditions of bolt-connected joints, which are widely used in various kinds of steel structures. The looseness of bolts may directly affect the stability and safety of the entire structure. In this study, a guided wave-based method for bolt looseness detection and localization is presented for a joint structure with multiple bolts. SH waves generated and received by a small number (two pairs) of magnetostrictive transducers were used. The bolt looseness index was proposed based on the changes in the reconstructed responses excited by the time reversal signals of the measured unit impulse responses. The damage locations and local damage severities were estimated using the damage indices from several wave propagation paths. The back propagation neural network (BPNN) technique was employed to identify the local damages. Numerical and experimental studies were conducted on a lap joint with eight bolts. The results show that the total damage severity can be successfully detected under the effect of external force and measurement noise. The local damage severity can be estimated reasonably for the experimental data using the BPNN constructed by the training patterns generated from the finite element simulations.

Preliminary Study for Vision A.I-based Automated Quality Supervision Technique of Exterior Insulation and Finishing System - Focusing on Form Bonding Method - (인공지능 영상인식 기반 외단열 공법 품질감리 자동화 기술 기초연구 - 단열재 습식 부착방법을 중심으로 -)

  • Yoon, Sebeen;Lee, Byoungmin;Lee, Changsu;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.133-134
    • /
    • 2022
  • This study proposed vision artificial intelligence-based automated supervision technology for external insulation and finishing system, and basic research was conducted for it. The automated supervision technology proposed in this study consists of the object detection model (YOLOv5) and the part that derives necessary information based on the object detection result and then determines whether the external insulation-related adhesion regulations are complied with. As a result of a test, the judgement accuracy of the proposed model showed about 70%. The results of this study are expected to contribute to securing the external insulation quality and further contributing to the realization of energy-saving eco-friendly buildings. As further research, it is necessary to develop a technology that can improve the accuracy of the object detection model by supplementing the number of data for model training and determine additional related regulations such as the adhesive area ratio.

  • PDF

An Efficient Edge Detection Technique for Separating Regions in an Image (영상내에서 영역 구분을 위한 효율적인 경계검출 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.359-360
    • /
    • 2021
  • The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.

  • PDF

Water Distribution Network Partitioning Based on Community Detection Algorithm and Multiple-Criteria Decision Analysis

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.115-115
    • /
    • 2020
  • Water network partitioning (WNP) is an initiative technique to divide the original water distribution network (WDN) into several sub-networks with only sparse connections between them called, District Metered Areas (DMAs). Operating and managing (O&M) WDN through DMAs is bringing many advantages, such as quantification and detection of water leakage, uniform pressure management, isolation from chemical contamination. The research of WNP recently has been highlighted by applying different methods for dividing a network into a specified number of DMAs. However, it is an open question on how to determine the optimal number of DMAs for a given network. In this study, we present a method to divide an original WDN into DMAs (called Clustering) based on community structure algorithm for auto-creation of suitable DMAs. To that aim, many hydraulic properties are taken into consideration to form the appropriate DMAs, in which each DMA is controlled as uniform as possible in terms of pressure, elevation, and water demand. In a second phase, called Sectorization, the flow meters and control valves are optimally placed to divide the DMAs, while minimizing the pressure reduction. To comprehensively evaluate the WNP performance and determine optimal number of DMAs for given WDN, we apply the framework of multiple-criteria decision analysis. The proposed method is demonstrated using a real-life benchmark network and obtained permissible results. The approach is a decision-support scheme for water utilities to make optimal decisions when designing the DMAs of their WDNs.

  • PDF