• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.19 seconds

The Direct Sequence Spread Spectrum Signal Detection Using The Triple Correlation Estimator Value (3차 상관 추정치를 이용한 직접 시퀀스 확산대역 신호의 검출)

  • 임연주;조영하;박상규;임정석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1025-1033
    • /
    • 2004
  • This paper covers the detection of covert direct sequence spread spectrum signal without the PN(Pseudo Noise) code information. Due to its low probability of interception, the difficulty of spectrum surveillance increases. Detection parameters are the signal existence of given bandwidth, the length of spreading sequence used by transmitter, and the identification of spreading code for detected chip length. The triple correlation function(TCF) value which is one of the higher order statistical signal processing techniques can be used to detect spread spectrum signal without a prior knowledge, but, it has weakness that TCF results depend on the spread data sequence in actual application. This paper proposes the new scheme that not only overcomes the weakness but also presents better performance than the traditional TCF scheme. The performance comparison of conventional TCF with proposed technique shows that the triple correlation estimator(TCE) has better detection capability.

Improved CNN Algorithm for Object Detection in Large Images

  • Yang, Seong Bong;Lee, Soo Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Conventional Convolutional Neural Network(CNN) algorithms have limitations in detecting small objects in large image. In this paper, we propose an improved model which is based on Region Of Interest(ROI) selection and image dividing technique. We prepared YOLOv3 / Faster R-CNN algorithms which are transfer-learned by airfield and aircraft datasets. Also we prepared large images for testing. In order to verify our model, we selected airfield area from large image as ROI first and divided it in two power n orders. Then we compared the aircraft detection rates by number of divisions. We could get the best size of divided image pieces for efficient small object detection derived from the comparison of aircraft detection rates. As a result, we could verify that the improved CNN algorithm can detect small object in large images.

Dual-Channel Acoustic Event Detection in Multisource Environments Using Nonnegative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해 및 은닉 마코프 모델을 이용한 다음향 환경에서의 이중 채널 음향 사건 검출)

  • Jeon, Kwang Myung;Kim, Hong Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a dual-channel acoustic event detection (AED) method using nonnegative tensor factorization (NTF) and hidden Markov model (HMM) in order to improve detection accuracy of AED in multisource environments. The proposed method first detects multiple acoustic events by utilizing channel gains obtained from the NTF technique applied to dual-channel input signals. After that, an HMM-based likelihood ratio test is carried out to verify the detected events by using channel gains. The detection accuracy of the proposed method is measured by F-measures under 9 different multisource conditions. Then, it is also compared with those of conventional AED methods such as Gaussian mixture model and nonnegative matrix factorization. It is shown from the experiments that the proposed method outperforms the convectional methods under all the multisource conditions.

Edge Detection in Color Image Using Color Morphology Pyramid (컬리 모폴로지 피라미드를 이용한 컬러 이미지의 에지 검출)

  • 남태희;이석기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.65-69
    • /
    • 2001
  • Edge detection is the most important process that belongs to the first step in image recognition or vision system and can determine the efficiency valuation. The edge detection with color images is very difficult. because color images have lots of information that contain not only general information representing shape, brightness and so on but also that representing colors. In this paper, we propose architecture of universalized Color Morphological Pyramids(CMP) which is able to give effective edge detection. Image pyramid architecture is a successive image sequence whose area ratio 2$\^$-1/(ι= 1, 2, . . . ,N) after filtering and subsampling of input image. In this technique, noise removed by sequential filtering and resolution is degraded by downsampling using CMP in various color spaces. After that, new level images are constructed that apply formula using distance of neighbor vectors in close level images and detection its image.

Development and Evaluation of Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Tylenchulus semipenetrans Using DNA Extracted from Soil

  • Song, Zhi-Qiang;Cheng, Ju-E;Cheng, Fei-Xue;Zhang, De-Yong;Liu, Yong
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.184-192
    • /
    • 2017
  • Tylenchulus semipenetrans is an important and widespread plant-parasitic nematode of citrus worldwide and can cause citrus slow decline disease leading to significant reduction in tree growth and yield. Rapid and accurate detection of T. semipenetrans in soil is important for the disease forecasting and management. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed to detect T. semipenetrans using DNA extracted from soil. A set of five primers was designed from the internal transcribed spacer region (ITS1) of rDNA, and was highly specific to T. semipenetrans. The LAMP reaction was performed at $63^{\circ}C$ for 60 min. The LAMP product was visualized directly in one reaction tube by adding SYBR Green I. The detection limit of the LAMP assay was $10^{-2}J2/0.5g$ of soil, which was 10 times more sensitive than conventional PCR ($10^{-1}J2/0.5g$ of soil). Examination of 24 field soil samples revealed that the LAMP assay was applicable to a range of soils infested naturally with T. semipenetrans, and the total assay time was less than 2.5 h. These results indicated that the developed LAMP assay is a simple, rapid, sensitive, specific and accurate technique for detection of T. semipenetrans in field soil, and contributes to the effective management of citrus slow decline disease.

Optical Flow-Based Marker Tracking Algorithm for Collaboration Between Drone and Ground Vehicle (드론과 지상로봇 간의 협업을 위한 광학흐름 기반 마커 추적방법)

  • Beck, Jong-Hwan;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.107-112
    • /
    • 2018
  • In this paper, optical flow based keypoint detection and tracking technique is proposed for the collaboration between flying drone with vision system and ground robots. There are many challenging problems in target detection research using moving vision system, so we combined the improved FAST algorithm and Lucas-Kanade method for adopting the better techniques in each feature detection and optical flow motion tracking, which results in 40% higher in processing speed than previous works. Also, proposed image binarization method which is appropriate for the given marker helped to improve the marker detection accuracy. We also studied how to optimize the embedded system which is operating complex computations for intelligent functions in a very limited resources while maintaining the drone's present weight and moving speed. In a future works, we are aiming to develop collaborating smarter robots by using the techniques of learning and recognizing targets even in a complex background.

DNN Based Multi-spectrum Pedestrian Detection Method Using Color and Thermal Image (DNN 기반 컬러와 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법)

  • Lee, Yongwoo;Shin, Jitae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.361-368
    • /
    • 2018
  • As autonomous driving research is rapidly developing, pedestrian detection study is also successfully investigated. However, most of the study utilizes color image datasets and those are relatively easy to detect the pedestrian. In case of color images, the scene should be exposed by enough light in order to capture the pedestrian and it is not easy for the conventional methods to detect the pedestrian if it is the other case. Therefore, in this paper, we propose deep neural network (DNN)-based multi-spectrum pedestrian detection method using color and thermal images. Based on single-shot multibox detector (SSD), we propose fusion network structures which simultaneously employ color and thermal images. In the experiment, we used KAIST dataset. We showed that proposed SSD-H (SSD-Halfway fusion) technique shows 18.18% lower miss rate compared to the KAIST pedestrian detection baseline. In addition, the proposed method shows at least 2.1% lower miss rate compared to the conventional halfway fusion method.

MEMS based capacitive biosensor for real time detection of bacterial growth (실시간 박테리아 감지를 위한 정전용량방식의 MEMS 바이오센서)

  • Seo, Hye-Kyoung;Lim, Dae-Ho;Lim, Mi-Hwa;Kim, Jong-Baeg;Shin, Jeon-Soo;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.195-202
    • /
    • 2008
  • A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.

An Optimum-adaptive Intrusion Detection System Using a Mobile Code (모바일 코드를 이용한 최적적응 침입탐지시스템)

  • Pang Se-chung;Kim Yang-woo;Kim Yoon-hee;Lee Phil-Woo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.45-52
    • /
    • 2005
  • A damage scale of information property has been increasing rapidly by various illegal actions of information systems, which result from dysfunction of a knowledge society. Reinforcement in criminal investigation requests of network security has accelerated research and development of Intrusion Detection Systems(IDSs), which report intrusion-detection about these illegal actions. Due to limited designs of early IDSs, it is hard for the IDSs to cope with tricks to go around IDS as well as false-positive and false-negative trials in various network environments. In this paper, we showed that this kind of problems can be solved by using a Virtual Protocol Stack(VPS) that possesses automatic learning ability through an optimum-adaptive mobile code. Therefore, the enhanced IDS adapts dynamically to various network environments in consideration of monitored and self-learned network status. Moreover, it is shown that Insertion/Evasion attacks can be actively detected. Finally, we discussed that this method can be expanded to an intrusion detection technique that possesses adaptability in the various mixed network environments.

The Detection of Yellow Sand Using MTSAT-1R Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.236-238
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-functional Transport Satellite-1 Replacement (MTSAT-1R) data. The algorithm is the hybrid algorithm that has used two methods combined together. The first method used the differential absorption in brightness temperature difference between $11{\mu}m$ and $12{\mu}m$ (BTD1). The radiation at 11 ${\mu}m$ is absorbed more than at 12 ${\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m$ and $11{\mu}m$ (BTD2). The technique would be most sensitive to dust loading during the day when the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. We have applied the three methods to MTSAT-1R for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. As produced Principle Component Image (PCI) through the PCA is the correlation between BTD1 and BTD2, errors of about 10% that have a low correlation are eliminated for aerosol detection. For the region of aerosol detection, aerosol index (AI) is produced to the scale of BTD1 and BTD2 values over land and ocean respectively. AI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between AI and OMI aerosol index (AI) shows remarkable good correlations during daytime and relatively good correlations over the land.

  • PDF