• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.03 seconds

RADAR level measurement in Joule heated ceramic melter: A novel technique

  • Suneel, G.;Mahashabde, Mukesh;Borkotoky, Ritusmita;Sharma, Nitin Kumar;Pradeep, M.P.;Gayen, J.K.;Pimparkar, H.R.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1176-1180
    • /
    • 2021
  • The current study relates to RADAR (RAdio Detection and Ranging) application for level measurement of vitrified radioactive liquid nuclear waste. The vitrification of radioactive liquid waste is carried out in special equipment called 'Melters'. The study is directed towards the design and frequency modulation used in the level measurement of vitrified waste. More specifically, the RADAR design and frequency used for level measurement in a melter. This level measurement technique can also be used for dynamic vitrification process and can be used to measure the level variations without using any external medium/material and using only electromagnetic waves. Also, this technique is durable and accurate even under the high radioactive environment present inside the melter.

Determination of copper(II) in various samples by flame atomic absorption spectrophotometry after column separation by adsorption of its N-benzoylphenylhydroxylamine complex on benzophenone

  • Park, Moon-Hee;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • A sensitive technique for the determination of trace Cu(II) in various samples after the column preconcentration by adsorbing its N-benzoylphenylhydroxylamine (BPHA) onto benzophenone was developed. Several experimental conditions such as the pH of the sample solution, the amount of chelating agent, the amount of benzophenone, and the flowrate of sample solution and so forth were optimized. The interfering effects of diverse concomitant ions were investigated. Fe(III) and $CN^-$ interfered with more seriously than any other ions. However, the interference by these ions could be overcome sufficiently by adjusting the added volume of 0.01M BPHA to 10 mL. The dynamic range, the correlation coefficient ($r^2$) and the detection limit obtained by this proposed technique were 5.0~120 ng/mL, 0.9974, and 2.1 ng/mL, respectively. For validating this proposed technique, the aqueous samples (stream water, reservoir water, and wastewater), the plastic sample and the diluted brass sample were used. Recovery yields of 93~102% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. This method was also validated by the rice flour CRM (normal, fortified) samples. Based on the results from the experiment, it was found that this proposed technique could be applied to the determination of Cu(II) in various real samples.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information and color information (깊이정보와 컬러정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Kim, Woo-Youl;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1825-1838
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth information and skin color. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame. For the exactness, the proposed detection method and previous method showed a same detection ratio but in the error ratio, which is about 0.66%, the proposed method showed considerably improved performance. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

CORRELATION ANALYSIS METHOD OF SENSOR DATA FOR PREDICTING THE FOREST FIRE

  • Shon Ho Sun;Chi Jeong Hee;Kim Eun Hee;Ryu Keun Ho;Jung Doo Yeong;kim Kyung Ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.186-188
    • /
    • 2005
  • Because forest fire changes the direction according to the environmental elements, it is difficult to predict the direction of it. Currently, though some researchers have been studied to which predict the forest fire occurrence and the direction of it, using the remote detection technique, it is not enough and efficient. And recently because of the development of the sensor technique, a lot of In-Situ sensors are being developed. These kinds of In-Situ sensor data are used to collect the environmental elements such as temperature, humidity, and the velocity of the wind. Accordingly we need the prediction technique about the environmental elements analysis and the direction of the forest fire, using the In-Situ sensor data. In this paper, as a technique for predicting the direction of the forest fire, we propose the correlation analysis technique about In-Situ sensor data such as temperature, humidity, the velocity of the wind. The proposed technique is based on the clustering method and clusters the In-Situ sensor data. And then it analyzes the correlation of the multivariate correlations among clusters. These kinds of prediction information not only helps to predict the direction of the forest fire, but also finds the solution after predicting the environmental elements of the forest fire. Accordingly, this technique is expected to reduce the damage by the forest fire which occurs frequently these days.

  • PDF

Remote Sensing of Soil Moisture Change Using a Differential Interferometry Technique (차분 간섭 기법을 이용한 지표면 수분함유량 변화 탐지)

  • Park, Sin-Myeong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.459-465
    • /
    • 2013
  • This paper presents a differential interferometry technique for soil moisture change detection by measuring surface-height variation. COSMO-SkyMed SAR images were used to verify the DInSAR(differential interferometric SAR) technique. The soil penetration depth changes according to soil moisture, that causes phase change of the received signal. The height of soil surface and its displacement can be detected by a radar interferometry technique using phase difference of two received signals. To retrieve displacement variation, one of three SAR images is used as a reference image. Reference image and other two images are processed by the differential interferometry technique in the same area. The soil moisture was measured for the test sites to verify the DInSAR technique. The penetration depth is calculated by using the in-situ measured soil moisture data and it is compared with the displacement values acquired by the DInSAR technique.