• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.043 seconds

A Study on the Technique of Fault Classification in Transmission Lines Using a Combined Adaptive Network-Based Fuzzy Inference System (ANFIS를 이용한 송전선로의 고장판별 기법에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.417-423
    • /
    • 2001
  • This paper proposes a technique for fault detection and classification for both LIF(Low Impedance Fault)s and HIF(High Impedance Fault)s using Adaptive Network-based Fuzzy Inference System(ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square(RMS) values of 3-phase currents and zero sequence current. The performance of the proposed technique is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classily faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

Partial Discharge Detection on Site GIS Using UHF Technique (GIS 부분방전 검출을 위한 UHF 신호측정법 현장 적용)

  • Yoon, Jin-Yeol;Park, Ki-Jun;Goo, Sun-geun;Jo, Sung-Hoon;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1915-1917
    • /
    • 2000
  • Laboratory experiments and on site measurements were conducted to detect partial discharges in GIS(Gas Insulated Switchgear) using the UHF(Ultra High Frequency) technique that has been applied many places in the world. Experimental results were in good agreement with calculation in locating a partial discharge source using mock-up GIS. Defect type and its location were inferred after a measurement on 345 kV GIS that showed some abnormal phenomenon. Precise examination inside the GIS coincided with the results inferred from the measurement. High reliability of UHF technique for site application was confirmed.

  • PDF

Quality Inspection of Dented Capsule using Curve Fitting-based Image Segmentation

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.125-130
    • /
    • 2016
  • Automatic quality inspection by computer vision can be applied and give a solution to the pharmaceutical industry field. Pharmaceutical capsule can be easily affected by flaws like dents, cracks, holes, etc. In order to solve the quality inspection problem, it is required computationally efficient image processing technique like thresholding, boundary edge detection and segmentation and some automated systems are available but they are very expensive to use. In this paper, we have developed a dented capsule image processing technique using edge-based image segmentation, TLS(Total Least Squares) curve fitting technique and adopted low cost camera module for capsule image capturing. We have tested and evaluated the accuracy, training and testing time of the classification recognition algorithms like PCA(Principal Component Analysis), ICA(Independent Component Analysis) and SVM(Support Vector Machine) to show the performance. With the result, PCA, ICA has low accuracy, but SVM has good accuracy to use for classifying the dented capsule.

A review of the application of acoustic emission technique in engineering

  • Gholizadeh, S.;Leman, Z.;Baharudin, B.T.H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1075-1095
    • /
    • 2015
  • The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering.

A Vehicle SoC Fault Diagnosis Technique using FlexRay Protocol

  • Kang, Seung-Yeop;Jung, Ji-Hun;Park, Sung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose vehicle SoC fault diagnosis platform using FlexRay protocol in order to detect the faults of semiconductor control chip even after vehicle production. Before FlexRay protocol by sending NFI (Null Frame Indicator) bit among the header segment and a specific identifier in the payload segment of FlexRay frame, this technique can be distinguishable from normal mode and test mode. By using this technique, it is possible to detect the faults such as performance degradation of vehicle network system caused by the aging or several problems of vehicle semiconductor chip. Also high reliability and safety of vehicle can be maintained by using structural test for vehicle SoC fault detection.

A Technical Trend on UHF Techniques for On-Line PD Monitoring and Site Testing for Transformer (전력용 변압기의 온라인 PD 모니터링과 시험을 위한 UHF 기술 동향)

  • Kim, Byung-Woo;Kim, Yun-Seok;Kim, Chang-Bok;Cho, Soo-Young;Choi, Young-Il;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1972-1973
    • /
    • 2007
  • A field-oriented UHF system for on-line PD monitoring of transformers is designed, which has been installed inside the oil tank of a transformer. This system has successfully captured long intermittent discharge signals that hadn't been detected through conventional techniques, and solved the problem successfully. The results demonstrate that UHF technique has great advantages for on-line PD monitoring of transformers. By adopting the peak detection technique, it becomes easy and effective for the transplantation of the phase-resolved pattern recognition technique from conventional method to UHF method, and then to realize continuous on-line monitoring, source characterization and trending analysis.

  • PDF

Guided-Wave Tomographic Imaging of Plate Defects by Laser-Based Ultrasonic Techniques

  • Park, Junpil;Lim, Juyoung;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

A Study on Generic Unpacking to Prevent Zombie Client on Mobile Platform (좀비 클라이언트 차단을 위한 실행 압축 기술에 관한 연구)

  • Ko, Jong-Bin;Lee, Sang-Ha;Shon, Tae-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.545-551
    • /
    • 2013
  • Packed technique makes difficult to respond quickly because the malicious-code is reduced size that easy to diffusion and changed code that make spend longer time for analysis. In this paper, we analysed the packing tool softwares and we proposed construction and detection methods of the packed technique for easy to analysis of the packed malicious code based on variation of entropy value.

Boron Detection Technique in Silicon Thin Film Using Dynamic Time of Flight Secondary Ion Mass Spectrometry

  • Hossion, M. Abul;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.26-30
    • /
    • 2021
  • The impurity concentration is a crucial parameter for semiconductor thin films. Evaluating the impurity distribution in silicon thin film is another challenge. In this study, we have investigated the doping concentration of boron in silicon thin film using time of flight secondary ion mass spectrometry in dynamic mode of operation. Boron doped silicon film was grown on i) p-type silicon wafer and ii) borosilicate glass using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using well-tuned SIMS measurement recipe, we have detected the boron counts 101~104 along with the silicon matrix element. The secondary ion beam sputtering area, sputtering duration and mass analyser analysing duration were used as key variables for the tuning of the recipe. The quantitative analysis of counts to concentration conversion was done following standard relative sensitivity factor. The concentration of boron in silicon was determined 1017~1021 atoms/㎤. The technique will be useful for evaluating distributions of various dopants (arsenic, phosphorous, bismuth etc.) in silicon thin film efficiently.

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.