• 제목/요약/키워드: detection properties

검색결과 1,146건 처리시간 0.023초

형태의 특징을 이용한 콘크리트 균열 검출 (Concrete crack detection using shape properties)

  • 조범석;김영로
    • 디지털산업정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.17-22
    • /
    • 2013
  • In this paper, we propose a concrete crack detection method using shape properties. It is based on morphology algorithm and crack features. We assume that an input image is contaminated by various noises. Thus, we use a morphology operator and extract patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. Also, it is robust to noisy environment. The proposed algorithm classifies the segmented image into crack and background using shape properties of crack. This method calculates values of properties such as the number of pixels and the maximum length of the segmented region. Also, pixel counts of clusters are considered. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed crack detection method has better results than those by existing detection methods.

Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구 (Malicious Code Detection using the Effective Preprocessing Method Based on Native API)

  • 배성재;조재익;손태식;문종섭
    • 정보보호학회논문지
    • /
    • 제22권4호
    • /
    • pp.785-796
    • /
    • 2012
  • 본 논문에서는 악성코드의 시스템 콜 빈도수를 특징값으로 행위 기반 탐지(behavior-based detection)를 할 때, 시스템 콜의 속성 개수보다 학습데이터 개수가 적더라도 효과적으로 악성 코드를 탐지하는 기법을 제안한다. 이 연구에서는, 프로그램 코드가 동작할 때, 발생시키는 윈도우 커널 데이터인 Native API를 수집하여 빈도수로 정규화한 것을 기본적인 속성 값으로 사용하였다. 또한 악성코드와 정상 코드를 효과적으로 분류할 수 있으면서, 악성코드를 분류하기 위한 기본적인 속성의 개수보다 학습데이터 개수가 적어도 적용 가능한 GLDA(Generalized Linear Discriminant Analysis)를 사용하여, 새로운 속성 값들로 전환하였다. 분류 기법으로는 베이지언 분류법의 일종인 kNN(k-Nearest Neighbor) 분류법을 이용하여 악성 코드를 탐지하였다. 제안된 탐지 기법의 성능을 검증하기 위하여 수집된 Native API 로 기존의 연구 방법과 비교 검증하였다. 본 논문에 제안된 기법이 탐지율(detection rate) 100%인 Threshold 값에서, 다른 탐지 기법보다 낮은 오탐율(false positive rate)을 나타내었다.

해체와 구성을 이용한 다중 스케일 균열 검출 (Multi-scale crack detection using decomposition and composition)

  • 김영로;정지영
    • 디지털산업정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, we propose a multi-scale crack detection method. This method uses decomposition, composition, and shape properties. It is based on morphology algorithm, crack features. We use a morphology operator which extracts patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. However, morphology methods using only one structure element could detect only fixed width crack. Thus, we use decomposition and composition methods. We use a decimation method for decomposition. After decomposition and morphology operation, we get edge images given by binary values. Our method calculates values of properties such as the number of pixels and the maximum length of the segmented region. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed multi-scale crack detection method has better results than those of existing detection methods.

23kV급 조립형 케이블 접속재에서 부분방전 신호의 초음파 검출특성 (Ultrasonic detection properties for partial discharge at the premolded joint of a 23kV cable)

  • 이우영;류희석;선종호;김상준;송일근;김주용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1907-1909
    • /
    • 1996
  • In this paper, ultrsonic detection properties at a premolde joint utilized in a 23kV cables are studied. In a experiment a artificial defect within a joint and a measuring system are builded for generating discharges, gathering data about a detection properties, respectively. The experiment results show that one point detection is not allowed for monitoring a global status of a joint discharges and a detection sensitivity is less than 100pC. And also the attenuation and wave speed at the material of joint insulator are obtained.

  • PDF

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.

Performance of 3D printed plastic scintillators for gamma-ray detection

  • Kim, Dong-geon;Lee, Sangmin;Park, Junesic;Son, Jaebum;Kim, Tae Hoon;Kim, Yong Hyun;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2910-2917
    • /
    • 2020
  • Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.

다공성 구조를 가진 압저항 CNT/PDMS 소자의 감지특성 연구 (A Study of Detection Properties of Piezoresistive CNT/PDMS Devices with Porous Structure)

  • 이원준;이상훈
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.165-172
    • /
    • 2024
  • In this study, we investigated the detection properties of piezoresistive carbon nanotubes/polydimethylsiloxane (CNT/PDMS) devices with porous structures under applied pressure. The device, having dimensions of 10 mm × 10 mm × 5 mm, was fabricated with a porosity of 74.5%. To fabricate piezoresistive CNT/PDMS devices, CNTs were added using two different methods. In the first method, the CNTs were mixed with PDMS before the fabrication of the porous structure, while in the second, the CNTs were coated after the fabrication of the porous structure. Various detection properties of the fabricated devices were examined at different applied pressures. The CNT-coated device exhibited stable outputs with lesser variation than the CNT-mixed device. Moreover, the CNT-coated device exhibited improved reaction properties. The response time of the CNT-coated device was 1 min, which was approximately about 20 times faster than that of the CNT-mixed device. Considering these properties, CNT-coated devices are more suitable for sensing devices. To verify the CNT-coated device as a real sensor, it was applied to the gripping sensor system. A multichannel sensor system was used to measure the pressure distribution of the gripping sensor system. Under various gripping conditions, this system successfully measured the distributed pressures and exhibited stable dynamic responses.

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Properties of Detection Matrix and Parallel Flats fraction for $3^n$ Search Design+

  • Um, Jung-Koog
    • Journal of the Korean Statistical Society
    • /
    • 제13권2호
    • /
    • pp.114-120
    • /
    • 1984
  • A parallel flats fraction for the $3^n$ design is defined as union of flats ${t}At=c_i(mod 3)}, i=1,2,\cdots, f$ and is symbolically written as At=C where A is rank r. The A matrix partitions the effects into n+1 alias sets where $u=(3^{n-r}-1)/2. For each alias set the f flats produce an ACPM from which a detection matrix is constructed. The set of all possible parallel flats fraction C can be partitioned into equivalence classes. In this paper, we develop some properties of a detection matrix and C.

  • PDF

Multiple Properties-Based Moving Object Detection Algorithm

  • Zhou, Changjian;Xing, Jinge;Liu, Haibo
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.124-135
    • /
    • 2021
  • Object detection is a fundamental yet challenging task in computer vision that plays an important role in object recognition, tracking, scene analysis and understanding. This paper aims to propose a multiproperty fusion algorithm for moving object detection. First, we build a scale-invariant feature transform (SIFT) vector field and analyze vectors in the SIFT vector field to divide vectors in the SIFT vector field into different classes. Second, the distance of each class is calculated by dispersion analysis. Next, the target and contour can be extracted, and then we segment the different images, reversal process and carry on morphological processing, the moving objects can be detected. The experimental results have good stability, accuracy and efficiency.