• Title/Summary/Keyword: detection Efficiency

Search Result 1,713, Processing Time 0.028 seconds

Performance Characteristics of In-Situ Particle Monitors at Sub-Atmospheric Pressure (감압상태에서의 In-Situ Particle Monitor의 성능특성)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1564-1570
    • /
    • 1998
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at subatmospheric pressures has been studied. We created uniform upstream conditions of particle concentration and measured the detection efficiency, the lower detection limit, and the size response of the ISPM using uniform sized methylene blue aerosol particles. The effect of particle size, particle velocity, particle concentration, and system pressure on the detection efficiency was examined. Results show that the detection efficiency of the ISPM decreases with decreasing chamber pressure, and with increasing mass flow rate. The lower detection limit of the ISPM, determined at 50 % of the measured maximum detection efficiency, was found to be about $0.15{\sim}0.2{\mu}m$, which is similar to the minimum detectable size of $0.17{\mu}$ given by the manufacturer.

Spectral resolution evaluation by MCNP simulation for airborne alpha detection system with a collimator

  • Kim, Min Ji;Sung, Si Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1311-1317
    • /
    • 2021
  • In this study, an airborne alpha detection system, which consists of a passivated implanted planar silicon (PIPS) detector and an air filter, was developed. A collimator applied to the alpha detection system showed an enhancement in resolution and a degradation in detection efficiency. The resolution and detection efficiency were compared and analyzed to evaluate the performance of the collimator. Thus, the resolution was found to be more important than the efficiency as a determining factor of the detection system performance, from the viewpoint of radionuclide identification. The performance was evaluated on three properties of the collimator: hole shape, hole length, and the ratio between the hole and frame pitches. From the hole shape performance evaluation, a hexagonal collimator showed the highest resolution. Further, the collimator with a hole pitch of 14 mm was found to have the highest resolution while that with a frame pitch of 4-6 mm (i.e., 1.2-1.4 times longer than the hole pitch) showed the highest resolution.

Detection of voluminous gamma-ray source with a collimation beam geometry and comparison with peak efficiency calculations of EXVol

  • Kang, M.Y.;Sun, G.M.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2601-2606
    • /
    • 2020
  • In this study, we expanded the performance of the existing EXVol code and performed empirical experiments and calculations. A high-resolution gamma spectroscopy system was constructed, and a standard point source and a standard volume source were measured with an HPGe detector with 43.1% relative efficiency. EXVol was verified by quantitative comparison of the detection efficiencies determined by measurements and calculations. To introduce the concept of the detector scanning that occurs in the actual measurement into the EXVol code, a collimator was placed between the source and detector. The detection efficiency was determined in the asymmetric arrangement of the source and detector with a collimator. A collimator made of lead with a diameter of 15 mm and a thickness of 50 mm was installed between the source and the detector to determine the detection efficiency at a specific location. The calculation result was contour plotted so that the distribution of detection efficiency could be visually confirmed. The relative deviation between the measurements and calculations for the coaxial and asymmetric structures was 10%, and that for the collimation structure was 20%. The results of this study can be applied to research using γ-ray measurements.

Evaluation of Neutron Detection Efficiency of the Unified Non-Destructive Assay Using MCNPX Code (MCNPX 코드를 이용한 통합비파괴측정장치의 중성자 검출 효율 평가)

  • Won, Byung-Hee;Seo, Hee;Lee, Seung Kyu;Park, Se Hwan;Kim, Ho Dong
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.172-178
    • /
    • 2013
  • In this study, neutron detection efficiency of the UNDA system, which has been developed for study on nuclear material accountancy in a future pyro-process facility, was evaluated by using the MCNPX code. The detection efficiency was evaluated as a function of (1) positions of $^{252}Cf$ neutron source in the axial and radial directions, and (2) thicknesses and locations of the container filled with the depleted uranium materials for two different designs of the UNDA. In the case of $^{252}Cf$ source positions, detection efficiency was distributed from 6.83% to 13.35%. As $^{252}Cf$ source was positioned at upper part in the axial direction, detection efficiency was decreased after a slight increase. On the other hands, as $^{252}Cf$ source was positioned at outer part in the radial direction, detection efficiency was increased. In the case of container thickness, there was a slight decline when the thickness was increased. As the container was located at upper part, detection efficiency was decreased and as the container was located at outer part, detection efficiency was increased. Detection efficiency was varied from 10.31% to 13.61%. These values were higher than that of $^{252}Cf$ source case. The UNDA with polyethylene cover has about 2% higher detection efficiency than the UNDA without the cover.

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Electrochemical Determination of As(III) at Nanoporous Gold Electrodes with Controlled Surface Area

  • Seo, Min Ji;Kastro, Kanido Camerun;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • Because arsenic (As) is a chemical substance toxic to humans, there have been extensive investigations on the development of As detection methods. In this study, the electrochemical determination of As on nanoporous gold (NPG) electrodes was investigated using anodic stripping voltammetry. The electrochemical surface area of the NPG electrodes was controlled by changing the reaction times during the anodization of Au for NPG preparation, and its effect on the electrochemical behavior during As detection was examined. The detection efficiency of the NPG electrodes improved as the roughness factor of the NPG electrodes increased up to around 100. A further increase in the surface area of the NPG electrodes resulted in a decrease of the detection efficiency due to high background current levels. The most efficient As detection efficiency was obtained on the NPG electrodes prepared with an anodization time of 50 s. The effects of the detection parameters and of the Cu interference in As detection were investigated and the NPG electrode was compared to flat Au electrodes.

Efficiency calculation of the nMCP with 10B doping based on mathematical models

  • Yang, Jianqing;Zhou, Jianrong;Zhang, Lianjun;Tan, Jinhao;Jiang, Xingfen;Zhou, Jianjin;Zhou, Xiaojuan;Hou, Linjun;Song, Yushou;Sun, XinLi;Zhang, Quanhu;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2364-2370
    • /
    • 2021
  • The nMCP (Neutron sensitive microchannel plate) combined with advanced readout electronics is widely used in energy selective neutron imaging because of its good spatial and timing resolution. Neutron detection efficiency is a crucial parameter for the nMCP. In this paper, a mathematical model based on the oblique cylindrical channel and elliptical pore was established to calculate the neutron absorption probability, the escape probability of charged particles and overall detection efficiency of nMCP and analyze the effects of neutron incident position, pore diameter, wall thickness and bias angle. It was shown that when the doping concentration of the nMCP was 10 mol%, the thickness of nMCP was 0.6 mm, the detection efficiency could reach maximum value, about 24% for thermal neutrons if the pore diameter was 6 ㎛, the wall thickness was 2 ㎛ and the bias angle was 3 or 6°. The calculated results are of great significance for evaluating the detection efficiency of the nMCP. In a subsequent companion paper, the mathematical model would be extended to the case of the spatial resolution and detection efficiency optimization of the coating nMCP.

Measurement of Detection Efficiency of Plastic Track Detector to ${\alpha}-particle$ (고체비적검출기의 알파선 검출효율 측정에 관한 연구)

  • Park, Young-Woong;Yang, Hyun-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.3
    • /
    • pp.167-173
    • /
    • 1996
  • The calibration method for the detection efficiency of solid state track detector to alpha is presented, and the detection efficiency of CN-85 and LEXAN to alpha is measured by this method. The results are 97% and 57% in CN-85 and LEXAN, respectively. The reason for a better result in CN-85 in not only the high sensitivity but also the low energy dependency with comparing for LEXAN. The peak detection efficiency is 3MeV and 1.8MeV in CN-85 and LEXAN, respectively.

  • PDF

Optical Characterization of Superconducting Strip Photon Detector Using $MgB_2$

  • Shibata, H.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.96-98
    • /
    • 2012
  • Bias current dependence of a superconducting strip photon detector is studied in the wavelength range of 405 to 1310 nm. The detector is made of an $MgB_2$ meander pattern with the line width of 135 nm and thickness of 10 nm. At 1310 nm, the detection efficiency exponentially decreases as the bias current decreases. While at 405 nm, the detection efficiency almost saturates in the high bias current region. These features suggest that the intrinsic detection efficiency of the $MgB_2$ detector is high at 405 nm.

Investigation of the Performance Characteristics of an In-Situ Particle Monitor at Low Pressures Using Aerodynamic Lenses (저압상태에서 공기역학적 렌즈를 이용한 In-Situ Particle Monitor의 성능특성 분석)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1359-1367
    • /
    • 2000
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at low pressures has been studied. We generated the uniform sized methylene blue particle beams using three identical aerodynamic lenses in the center of the vacuum line, and measured the detection efficiency of the ISPM. The effects of particle size, particle concentration, mass flow rate, system pressure, and arrangement of aerodynamic lenses on the detection efficiency of the ISPM were examined. Results show that the detection efficiency of the ISPM greatly depends on the mass flow rate, and the particle Stokes number. We also found that the optimum Stokes number ranges from 0.4 to 1.9 for the experimental conditions.