• 제목/요약/키워드: detecting the motion recognition

검색결과 40건 처리시간 0.021초

사람 행동 인식에서 반복 감소를 위한 저수준 사람 행동 변화 감지 방법 (Detection of Low-Level Human Action Change for Reducing Repetitive Tasks in Human Action Recognition)

  • 노요환;김민정;이도훈
    • 한국멀티미디어학회논문지
    • /
    • 제22권4호
    • /
    • pp.432-442
    • /
    • 2019
  • Most current human action recognition methods based on deep learning methods. It is required, however, a very high computational cost. In this paper, we propose an action change detection method to reduce repetitive human action recognition tasks. In reality, simple actions are often repeated and it is time consuming process to apply high cost action recognition methods on repeated actions. The proposed method decides whether action has changed. The action recognition is executed only when it has detected action change. The action change detection process is as follows. First, extract the number of non-zero pixel from motion history image and generate one-dimensional time-series data. Second, detecting action change by comparison of difference between current time trend and local extremum of time-series data and threshold. Experiments on the proposed method achieved 89% balanced accuracy on action change data and 61% reduced action recognition repetition.

인체전자기장 신호를 응용하여 손동작 인식을 위한 하드웨어 구현에 대한 연구 (A study on the hardware development for handshake recognition using electric potential signal form human body)

  • 천우영;이석현;김영철
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.49-53
    • /
    • 2016
  • 인체 전자기장 신호를 검출하여 동작 인식에 이용하는 비접촉방식의 방법은 시간과 공간의 제약이 기존의 시스템보다 덜하므로 관련 연구들이 진행 중에 있다. 본 논문에서는 비접촉방식의 인체전기장 신호를 검출할 수 있는 하드웨어를 구현하여 이를 디지털 파형화 하여 인식률을 높일 수 있는 회로시스템을 설계하였다. 차동 증폭회로의 구현과 비교기를 연동한 디지털 파형화를 위한 회로 시스템을 시뮬레이션과 결합하여 PCB화한 후/ 설계된 전체 회로 시스템에 대한 특성평가를 수행하였다.

휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출 (Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction)

  • 주영훈;소제윤
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

2D 얼굴 영상을 이용한 로봇의 감정인식 및 표현시스템 (Emotion Recognition and Expression System of Robot Based on 2D Facial Image)

  • 이동훈;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.371-376
    • /
    • 2007
  • This paper presents an emotion recognition and its expression system of an intelligent robot like a home robot or a service robot. Emotion recognition method in the robot is used by a facial image. We use a motion and a position of many facial features. apply a tracking algorithm to recognize a moving user in the mobile robot and eliminate a skin color of a hand and a background without a facial region by using the facial region detecting algorithm in objecting user image. After normalizer operations are the image enlarge or reduction by distance of the detecting facial region and the image revolution transformation by an angel of a face, the mobile robot can object the facial image of a fixing size. And materialize a multi feature selection algorithm to enable robot to recognize an emotion of user. In this paper, used a multi layer perceptron of Artificial Neural Network(ANN) as a pattern recognition art, and a Back Propagation(BP) algorithm as a learning algorithm. Emotion of user that robot recognized is expressed as a graphic LCD. At this time, change two coordinates as the number of times of emotion expressed in ANN, and change a parameter of facial elements(eyes, eyebrows, mouth) as the change of two coordinates. By materializing the system, expressed the complex emotion of human as the avatar of LCD.

Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어 (Predictive Control of an Efficient Human Following Robot Using Kinect Sensor)

  • 허신녕;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

손동작 인식에 의한 컴퓨터 비전 인터페이스 설계 (Design of Computer Vision Interface by Recognizing Hand Motion)

  • 윤진현;이종호
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.1-10
    • /
    • 2010
  • 손동작을 통한 입력방법은 컴퓨터와 디지털 기기의 발전에 따라 요구되는 새로운 HCI(Human-Computer Interaction) 방법으로써 그 가능성을 가지고 있으며 이에 대한 다양한 시도가 있었다. 본 논문에서는 컴퓨터 비전을 기반으로 단일 카메라를 사용하는 손 영역 검출 및 추적방법을 제시하고 이에 의한 컴퓨터 인터페이스를 제안한다. 기존에 많이 쓰이는 피부색 매치 방법에 추가하여 형태 정보를 더함으로써 손 영역 검출능력을 향상 시켰다. 이러한 형태 정보를 추출하는 방법으로써 주요 방향 에지 기술자라는 방법을 제안하였고 이는 강력하여 학습 시간 없이 한 가지 손 모델만을 사용하여 손 영역 검출을 할 수 있다. 또한 손 영역 검출과 추적하는 방법을 나누어 추적할 때는 회전에 대한 자유도를 높이도록 설계 하였다. 위 방법을 이용하여 3차원 공간에 그려지는 필기체 숫자 인식에 적용해 보았으며 분류 방법으로 DNAC 알고리즘을 사용하였다. 결과적으로 손 영역 검출은 82%의 검출률을 보였고 필기체 숫자 인식은 90%의 인식률을 보였다.

RVR에 의한 자율주행로봇의 정밀제어에 관한연구 (A Study on Precise Control of Autonomous Travelling Robot Based on RVR)

  • 심병균;;김종수;하언태
    • 한국산업융합학회 논문집
    • /
    • 제17권2호
    • /
    • pp.42-53
    • /
    • 2014
  • Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we propose an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using a wireless microphone. Navigation Strategy is shown Obstacle detection and local map, Design of Goal-seeking Behavior and Avoidance Behavior, Fuzzy Decision Maker and Lower level controller. The final hypothesis is selected based on posterior probability. We then select the task in the motion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors. Those are powerful for detecting obstacle with simple algorithm.

Isometric Motion Recognition in Computer Animation

  • 이명원
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제3권2호
    • /
    • pp.55-63
    • /
    • 1997
  • 본 논문에서는 그룹 이론을 기반으로 3차원 공간상에서 두 물체의 모션으로부터 동량모션을 검출해내는 방법을 제안한다. 먼저 동량모션을 그룹 이론으로 개념적으로 정의하고 해결책으로는 물체의 모션에 따라 결정되는 새로운 개념의 좌표계를 이용한다. 이 좌표계는 물체의 모션을 양적으로 측정하기 위해 이용되며 본 논문에서 Motion Specific Coordinate System(MSCS) 으로 명명한다. 그리고, 이 좌표계를 이용하여 두 물체의 모션이 같은지를 검사하는 알고리즘을 제안한다. 이 알고리즘을 이용하면 3차원 좌표계에서 물체의 시작 위치나 물체의 모션의 방향과는 무관하게 두 물체의 모션을 비교하여 두 모션이 같은 모션인지를 알아낼 수 있다. 본 알고리즘은 물체가 여러 관절을 가진 경우에도 적용할 수 있다. 본 연구의 알고리즘에서 모션의 양적 측정은 MSCS 상에서의 이동 거리와 임의의 축을 중심으로 한 회전각을 이용하는 것으로 한정한다.

  • PDF

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

폐쇄회로 카메라에서 운동에너지를 이용한 모션인식과 의상색상 및 얼굴인식을 통한 특정인 추적 알고리즘 (A Tracking Algorithm to Certain People Using Recognition of Face and Cloth Color and Motion Analysis with Moving Energy in CCTV)

  • 이인정
    • 정보처리학회논문지B
    • /
    • 제15B권3호
    • /
    • pp.197-204
    • /
    • 2008
  • 특정인을 추적하는 기술은 인간처럼 행동하는 로봇기술에서 가장 많이 등장하는 기술이다. 이 기술은 세 가지 영역에서 접근하고 있는데 첫 째가 특정인의 의상 색상이고 두 번째가 특정인의 얼굴과 그 표정이며 세 번째가 특정인의 제스처나 머리의 움직임이다. 그러나 로봇은 센서를 통해 색상이나 제스처를 감지할 수 있기 때문에 폐쇄회로 카메라를 통해 획득한 영상만으로 특정인을 추적하는 것과는 다르다. 폐쇄회로 카메라에서 가장 큰 문제점은 시스템 속도인데 입력된 영상에서 다시 계산에 의해 특정인을 추적하기위해서는 계산수를 줄여야한다. 시스템 속도를 높이기 위해 색상 추적은 통계치를 사용하는 것이 좋고 얼굴인식은 고유 얼굴을 사용하는 것이 바람직하다. 색상과 얼굴인식만으로는 추적에 어려움이 있기 때문에 모션 분석이 필요하다. 기존의 모션 분석이 주어진 영상의 전체 영역에서 형상을 바탕으로 이루어지기 때문에 속도가 느리고 인식률도 떨어진다. 본 논문에서는 얼굴 인식 시 찾아진 얼굴영역에 대한 모션분석을 계산속도가 빠른 운동에너지를 써서 인식률과 인식 속도를 높였다. 본 논문이 제안한 알고리즘과 Girondel, V. 등이 제시한 방법을 같은 동영상에서 실험한 결과 동일한 인식률을 얻었으며 인식속도는 제안한 알고리즘이 더 빨랐으며 LDA를 사용할 경우 속도는 비슷하나 인식률은 더 나은 결과를 얻었으며 특정인을 찾는 것은 제안한 알고리즘이 더 효과적이었다.