• Title/Summary/Keyword: desorption process

Search Result 342, Processing Time 0.022 seconds

Monitoring of III-V semiconductor surface by In-situ Surface PhotoAbsorption

  • Kim, T. J.;Kim, Y. D.;H. Hwang;E. Yoon
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.79-82
    • /
    • 2003
  • We present the investigation on P- and As-desorption process from the (001) InP surface in metal organic chemical vapor deposition using surface photoabsorption (SPA). The monochromatic SPA signal showed rapid initial increase to reach In-stabilized surface value after $PH_3$ was turned off, but in case of As-desorption, the signal showed clear existence of a metastable state after the $AsH_3$ was turned off. The SPA spectra at each stable surfaces were taken to confirm the interpretation. This result indicates that the As-desorption process should be understood as a two-step process, in contrast to P-desorption of one-step process.

A Study on the Performance Prediction of Low Temperature Thermal Desorption System (저온 수처리장치 열교환기의 열전달 특성에 관한 연구)

  • Lee, C.T.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.76-81
    • /
    • 2009
  • Thermal desorption systems are designed to remove organic compounds from solid matrices such as soils, sludges and filter cakes without thermally destroying them. It is a separation technology, not a destruction technology. Since it is a thermal process, there is a common belief that temperature is the only significant parameter to be monitored. While it is true that better removal efficiencies are usually achieved at higher temperatures, other factors must be considered. Since the process is governed by mass transfer, heating time and the amount of mixing are also key parameters in optimizing removal efficiency. Thermal desorption have been successfully used for just about every organic contaminant found to date. It has also been used to remove mercury. In the present study, the numerical simulation has been performed to investigate the characteristics of heat transfer of LTTD(low temperature thermal desorption). The commercial software, AMESIM was applied for analyzing the heat transfer process in the LTTD.

  • PDF

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • Ito, Eisuke;Gang, Hun-Gu;Ito, Hiromi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

A Study of a Combined Microwave and Thermal Desorption Process for Contaminated Soil

  • Ha, Sang-An;Choi, Kyoung-Sik
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.225-230
    • /
    • 2010
  • In order to treat soil contaminated with high percentages of water and petroleum, the combined microwave and thermal desorption process was studied, which was composed of the consecutive connection of two pre-treatment processes. For the thickness of the contaminated soil layer on the transfer conveyor belt, the optimal total petroleum hydrocarbon (TPH) removal rate was studied with respect to the duration of microwave exposure in the consecutive process combined with thermal desorption. The TPH removal rate when the contaminated soil layer thickness was 1 cm at 6 kW of microwave power was 80%. The removals rates for 2 and 3 cm soil layer thicknesses were both 70%. Under identical experimental conditions, the TPH removal rate for the microwave pre-treatment, when considering the soil particle size, was over 70%. The lowest TPH removal rate was achieved with a particle diameter of 2.35 mm. For contaminated soil with 30% water content, 6 kW and a thermal desorption temperature of $600^{\circ}C$ were the optimal operational conditions for the removal of THP. However, considering the fuel consumption cost, 4 kW and a thermal desorption temperature of $300^{\circ}C$ would be the most economic conditions.

A study on the TDS removal characteristics in aqueous solution using MCDI module for application of water treatment process (정수처리 공정 적용을 위한 MCDI (Membrane Capacitive Deionization) Module의 수용액 내 TDS 제거 특성에 관한 연구)

  • Oh, Changseog;An, Jusuk;Oh, Hyun-Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • Recently, various researches have been studied, such as water treatment, water reuse, and seawater desalination using CDI (Capacitive deionization) technology. Also, applications like MCDI (Membrane capacitive deionization), FCDI (Flow-capacitive deionization), and hybrid CDI have been actively studied. This study tried to investigate various factors by an experiment on the TDS (Total dissolved solids) removal characteristics using MCDI module in aqueous solution. As a result of the TDS concentration of feed water from 500 to 2,000 mg/L, the MCDI cell broke through faster when the higher TDS concentration. In the case of TDS concentration according to the various flow rate, 100 mL/min was stable. In addition, there was no significant difference in the desorption efficiency according to the TDS concentration and method of backwash water used for desorption. As a result of using concentrated water for desorption, stable adsorption efficiency was shown. In the case of the MCDI module, the ions of the bulk solution which is escaped from the MCDI cell to the spacer during the desorption process are more important than the concentration of ions during desorption. Therefore, the MCDI process can get a larger amount of treated water than the CDI process. Also, prepare a plan that can be operated insensitive to the TDS concentration of backwash water for desorption.

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene

  • Ji, Sang Hyun;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.

Confirmation of The Fouling Phenomena in CDI Process and The Establishment of Its Removal Process Conditions (CDI 전극 내 파울링 현상 확인 및 제거공정 조건의 확립)

  • Kim, Tae Yeong;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.276-283
    • /
    • 2019
  • In this study, The experiments of the confirmation of the fouling phenomena in CDI process and the establishment of its removal process conditions were carried out. The foulant concentrations of humic acid sodium salt (HA) added to the feed solution were 5, 10, 15 mg/L, respectively. The occurrence of fouling under the certain adsorption/desorption conditions could be confirmed with an increase in adsorption and desorption concentration curve over time. Both the voltage and time in adsorption and desorption processes were changed to eliminate the fouled pollutants. Typically, the fouling removal condition was found at the adsorption condition 1.2 V/5 min and the desorption condition -3 V/2 min, respectively.

Prediction of Sorption/Desorption Parameters of Halogenated Aliphatic Compounds Using QSAR (QSAR을 이용한 지방족 할로겐화합물 흡착 및 탈착 계수의 예측)

  • 김종오;박증석;최연돈
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.737-742
    • /
    • 2002
  • Sorption and desorption is an important phenomenon to determine the fate of halogenated aliphatic hydrocarbons in the aqueous phase. This study was conducted to develope a predictive equation capable of estimating the sorption and desorption potentials of halogenated aliphatic hydrocarbons onto the sludge from activated process, sediment, and clay. It has shown that the sorption and desorption parameters can be accurately estimated using Quantitative Structural Activity Relationship(QSAR) models based on molecular connectivity indexes of test compounds. The QSAR model could be applied to predict the sorption and desorption capacity of the other halogenated aliphatic hydrocarbons. The QSAR modeling would provide a useful tool to predict the sorption and desorption capacity without time-consuming experiments.

Characteristics of Desorption for Benzene in Activated Carbon and Zeolite 13X Packed Bed (벤젠에 대한 활성탄 및 제올라이트 13X를 충진한 흡착탑에서 탈착 특성)

  • Kang, Sung-Won;Suh, Sung-Sup;Min, Byung-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.201-209
    • /
    • 2006
  • Various desorption methods were investigated for an activated carbon and zeolite 13X packed bed after benzene adsorption. Desorption experiments using hot steam, purge gas, and evacuation were performed. As a result, the desorption with hot steam showed the best performance. Hot steam makes the temperature in the adsorption column increase and gives arise to the desorption. Drying process should be accompanied to increase the efficiency because steam vapor prevents the adsorption later. The vacuum desorption showed poor performance and it reveals that temperature swing operation is more effective than pressure swing operation. In the purge gas desorption, good performance was achieved using evacuation.