• Title/Summary/Keyword: desired image

Search Result 395, Processing Time 0.026 seconds

Detection of ridges and valleys using local min/max operations (Local min/max 연산을 이용한 ridge 및 valley의 검출)

  • 박중조;김경민;정순원;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.118-126
    • /
    • 1996
  • In object analysis by image processing, finding lines plays a universal role. And these lines can be easily found by detecting ridges and valleys in digital gray scale images. In this paper, a new method of detecting ridges and valleys by using local min/max operations was presented. This method detects ridges and valleys of desired width by using erosion and dilation properties of local min/max operations, and requires no information of ridge or valley direction. Therefore the method is efficient and computationally simple in comparision with the conventional analytical method.

  • PDF

Partial Field Decompositon Using Beamforming Method Under Reflective Condition (반사면이 존재하는 환경에서 빔포밍 방법을 이용한 부분 음장 재구성)

  • 선종천;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.730-734
    • /
    • 2003
  • A beamforming method is a kind of spatial filter that focus the amy's signal capturing abilities in a desired direction. In this paper, we detect the location of a source under reflective condition using the multi-dimensional MUSIC algorithm then, we can iud the image source locations from the experimental geometry, and we reconstruct the partial fields for direct wave and reflected wave by using Adaptive nulling algorithm. Numerical simulations are performed to verify its performance under various conditions.

  • PDF

Image Restoration Considering Chromatic Aberration Problem of Multi-Spectral Filter Array Image (다중 분광 필터 배열 영상의 색수차 문제를 고려한 영상 복원 알고리즘)

  • Kwon, Ji Yong;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.123-131
    • /
    • 2016
  • To capture color and near-infrared images simultaneously, a multi-spectral filter array(MSFA) sensor is used. This is because an NIR band gives additional invisible information to human eyes to see subject under extremely low light level. However, because lenses have different refractive indices for different wavelengths, lenses may fail to focus widely different rays to the same convergence point. This is why a chromatic aberration(CA) problem occurs and images are degraded. In this paper, the image restoration algorithm for an MSFA image, which removes the CA problem, is presented. The obtained MSFA image is filtered by the estimated low-pass kernel to generate a base image. This base image is used to remove CA problem in multi-spectral(MS) images. By modeling the image degradation process and by using the least squares approach of the difference between the high-frequencies of the base and MS images, the desired high-resolution MS images are reconstructed. The experimental results show that the proposed algorithm performs well in estimating the high-quality MS images and reducing the chromatic aberration problem.

A Data Type for Concept-Based Retrieval against Image Databases Indefinitely Indexed (불확정적으로 색인된 이미지 데이터베이스를 개념 기반으로 검색하기 위한 자료형)

  • Yang, Jae-Dong
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • There are two significant drawbacks in triple image indexing; one is that is cannot support concept-based image retrieval and the other is that it fails to allow disjunctive labeling of images. To remedy the drawbacks, we propose a new technique supporting a concept-based retrieval against images indexed by indefinite fuzzy triples (I-fuzzy triples). The I-fuzzy triples allow not only a disjunctive image labeling, but also a concept-based matching against images labeled disjunctively. The disjunctive labeling is based on the expended closed world assumption and the concept-based image retrieval is based on fuzzy matching. In this paper, we also propose a concept-based query evaluation against the image database to extract desired answers with the degree of certainty $\alpha$$\in$[1,0].

Study on Distortion Compensation of Underwater Archaeological Images Acquired through a Fisheye Lens and Practical Suggestions for Underwater Photography - A Case of Taean Mado Shipwreck No. 1 and No. 2 -

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.312-321
    • /
    • 2021
  • Underwater archaeology relies heavily on photography and video image recording during surveillances and excavations like ordinary archaeological studies on land. All underwater images suffer poor image quality and distortions due to poor visibility, low contrast and blur, caused by differences in refractive indices of water and air, properties of selected lenses and shapes of viewports. In the Yellow Sea (between mainland China and the Korean peninsula), the visibility underwater is far less than 1 m, typically in the range of 30 cm to 50 cm, on even a clear day, due to very high turbidity. For photographing 1 m x 1 m grids underwater, a very wide view angle (180°) fisheye lens with an 8 mm focal length is intentionally used despite unwanted severe barrel-shaped image distortion, even with a dome port camera housing. It is very difficult to map wide underwater archaeological excavation sites by combining severely distorted images. Development of practical compensation methods for distorted underwater images acquired through the fisheye lens is strongly desired. In this study, the source of image distortion in underwater photography is investigated. We have identified the source of image distortion as the mismatching, in optical axis and focal points, between dome port housing and fisheye lens. A practical image distortion compensation method, using customized image processing software, was explored and verified using archived underwater excavation images for effectiveness in underwater archaeological applications. To minimize unusable area due to severe distortion after distortion compensation, practical underwater photography guidelines are suggested.

Subband Image Coding using Multirate Tree-Structured Vector Quantization (다중비트율 트리구조 벡터 양자화를 이용한 영상의 대역분할 부호화)

  • 이광기;이완주;김대관;최일상;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.895-906
    • /
    • 1993
  • In this paper, MTSVQ(Multirate Tree-Structured Vector Quantization) is introduced for subband image coding. Original images are decomposed into a number of subband components, and multiresolution codebook is designed by MTSVQ algorithm. Optimal bit allocation among the subband components becomes the problem selecting the particular pruned subtree of MTSVQ which has the desired rate and distortion.

  • PDF

The Visual Inspection of Key Pad Parts Using a Fuzzy Binarization Algorithm

  • Kim, Young-Baek;Lee, Hong-Chang;Rhee, Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • The detection of defective parts in a factory is usually performed by the human eye. Therefore, heavy manpower is in demand for minor enterprises. An image processing system is desired to solve this drawback. However, due to the variety of the products characteristics, an general algorithm is needed that can adapt to these characteristics. Therefore, in this paper, the key pad parts' characteristics which need to be dealt with are analyzed in order to embody the image processing algorithm that is suggested. The experimental results show the probability of detecting a defective part is 95% with a detection time of 0.203 seconds, on the average.

Environmental Graphic Design in Medical Facility - Wayfinding Design For Wonkwang University Hospital - (의료시설 환경 그래픽디자인 - 원광대학교병원 길 찾기 디자인 -)

  • Kim, Joo-Mi
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.05a
    • /
    • pp.71-72
    • /
    • 2007
  • In this study and design, I explore the visual communication design process related to wayfinding in Wonkwang University Hospital in Iksan City. The purpose for designing an integrated is to graphically communicate the complex information. I have designed a graphic information system combining graphic elements such as typography, color, image and text layout, and graphic image to present interpretive and communicative processes. As a result of designing, the wayfinding is s term used to describe the program of applying environmental graphics and or architectural sign systems. In other words, wayfinding is the art of helping people find their way by utilizing visual communications such as signs, directories, landmarks, edges, paths and so on. Wayfinding can also be explained as the ability to know where one is in space and how to find one's way through space. Wayfinding design then becomes a systematic arrangement of the variables that allows patients and visitors to successfully find their desired destinations, especially in a hospital.

  • PDF

SEGMENTATION WITH SHAPE PRIOR USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • Terbish, Dultuya;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.225-244
    • /
    • 2014
  • In this work, we discuss segmentation algorithms based on the level set method that incorporates shape prior knowledge. Fundamental segmentation models fail to segment desirable objects from a background when the objects are occluded by others or missing parts of their whole. To overcome these difficulties, we incorporate shape prior knowledge into a new segmentation energy that, uses global and local image information to construct the energy functional. This method improves upon other methods found in the literature and segments images with intensity inhomogeneity, even when images have missing or misleading information due to occlusions, noise, or low-contrast. We consider the case when the shape prior is placed exactly at the locations of the desired objects and the case when the shape prior is placed at arbitrary locations. We test our methods on various images and compare them to other existing methods. Experimental results show that our methods are not only accurate and computationally efficient, but faster than existing methods as well.

Fuzzy Neural Network-based Visual Servoing : part I (퍼지 신경망을 이용한 시각구동(I))

  • 김태원;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1010-1019
    • /
    • 1994
  • It is shown that there exists a nonlinear mapping which transforms image features and their changes to the desired camera motion without measuring of the relative distance between the camera and the object. This nonlinear mapping can eliminate several difficulties occurring in computing the inverse of the feature Jacobian as in the usual feature-based visual feedback control methods. Instead of analytically deriving the closed form of this mapping, a Fuzzy Membership Function-based Neural Network (FMFNN) incorporating a Fuzzy-Neural Interpolating Network is used to approximate the nonlinear mapping. Several FMFNN's are trained to be capable of tracking a moving object in the whole workspace along the line of sight. For an effective implementation of the proposed FMF network, an image feature selection process is investigated. Finally, several numerical examples are presented to show the validity of the proposed visual servoing method.

  • PDF