• Title/Summary/Keyword: design-based

Search Result 50,971, Processing Time 0.065 seconds

New Design of Choice Sets for Choice-based Conjoint Analysis

  • Kim, Bu-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.847-857
    • /
    • 2012
  • This article is concerned with choice-based conjoint analysis versus rating-based and ranking-based conjoint analysis. Choice-based conjoint analysis has a definite advantage in that the respondent's task of choosing the most preferred profile from several competing profiles adequately mimics consumer marketplace behavior. It is crucial to design the choice sets appropriate for the choice-based conjoint. Thus, this article suggests a new method to design the choice sets that are well-balanced. It augments the balanced incomplete block design and then obtains the dual design of the result to accommodate various numbers of profiles. In consequence, the choice sets designed by the new method have the desirable characteristics that each profile is presented to the same number of respondents, and pairs of any two distinct profiles occur together in the same number of choice sets. The balancing of the design increases the efficiency of the conjoint analysis. In addition, the pair-comparison scheme can improve the quality of data through the identification of contradictory responses.

A Comparative Study on Displacement-Based Seismic Design Method of Bridge Structures (변위기반설계법에 의한 교량 내진설계의 비교연구)

  • Ju, Jeong-Hun;Cho, Yang-Hee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.308-315
    • /
    • 2006
  • Most of seismic designs of major structures up to now have been performed by the traditional 'force-based design' approaches. However, they are not so efficient to evaluate the structural deformations by potential nonlinear behaviors which are directly related with the damages or performance levels during earthquakes. Lately, based on this situation, various kinds of new seismic design approaches based on the deformation, which is called 'displacement-based design' procedures, have been proposed. In this paper, most of detail techniques and procedures of the new design methods in the literature are comparatively reviewed and evaluated first, followed by a series of design examples of typical bridge structures. Comparing the results with those of the existing force-based design, the improved levels of performance and economy of the displacement-based seismic design have been validated.

  • PDF

RBFN기법을 활용한 적응적 사례기반 설계

  • Jeong, Sa-Beom;Im, Tae-Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.237-240
    • /
    • 2005
  • This paper describer a design expert system which determines the design values of shadow mask using Case-Based Reasoning. In Case-Based Reasoning, it is important to both retrieve similar cases and adapt the cases to meet the design specifications exactly. Especially, the difficulty in automating the adaptation process will prevent the designers from using the design expert systems efficiently and easily. This paper explains knowledge-based design support systems for shadow mask through neural network-based case adaptation. Specifically, we developed 1) representing design knowledge and 2) adaptive case-based reasoning method using RBFN (Radial Basis Function Network).

  • PDF

An optimized torsional design of asymmetric wall structures (비대칭 벽식구조의 최적 비틀림 설계)

  • 조봉호;홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.327-334
    • /
    • 2002
  • This paper develops an optimized torsional design method of asymmetric wall structures considering deformation capacities of walls. Contrary to the current torsional provisions, a deformation based torsional design is based on the assumption that stiffness and strength are dependent. Current torsional provisions specify two design eccentricity of stiffness to calculate the design forces of members. But such a methodology leads to an excessive over-strength of some members and an optimal torsional behavior is not ensured. Deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Because optimal torsional behavior can be defined based on the deformation of members, deformation based torsional design procedure can be applied to the optimal and performance-based torsional design. To consider the effect of accidental eccentricity, an over-strength factor is defined. The over-strength factor is determined from performance level, torsional resistance and arrangement of walls.

  • PDF

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Design Principles for Learning Environment based on STEAM Education

  • Kim, Sunyoung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.55-61
    • /
    • 2021
  • In this study, a learning environment based on STEAM theory was proposed to support and improve learners' activities and achievements for convergent design education. The learning environment design influence STEAM education with intentional design and schedule coordination, schools can create informal environments that are crucial to STEAM education. The physical surroundings of the learning space should be applied to teaching methods and learning activity, especially for STEAM-based education, physical space conditions should support the learner's design thinking and process. Furthermore, STEAM-based education environment should support a vast array of experiences that allow students to learn the context around ideas and skills. For spaces for learning environment based on STEAM, common design principles should be considered such as technology integration, safety and security, transparency, multipurpose space, and outdoor learning. Therefore, the learning environment based on STEAM needs flexible and mobile, connected, integrated, organized, flipped, and team-focused surroundings to support the learners understand, participate, cooperate, and accomplish the design process.

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

Current practices and future directions of steel design in Japan

  • Yamaguchi, Eiki
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.159-168
    • /
    • 2005
  • Four design codes/regulations for steel structures in Japan are briefly reviewed. Some of them employ the limit state design concept while the others are still based on the allowable stress design concept. The process for revision is now in action. The directions in the development of structural design codes are also reported herein. It is noted that a current trend in this development is to employ the performance-based design concept that has been successfully implemented in some seismic design codes.

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.

A Study on Web based Integration of Design Resources with a Knowledge Based Engineering Technique (KBE 기법이 적용된 설계 자원 웹 기반 통합에 관한 연구)

  • Kim J.G.;Lee S.H.;Chun H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents an embodiment of design integration framework corresponding to changes in the latest manufacturing environment. The embodied system is named by 'WEB-KBE System' because it supports a product design with a KBE technique based on web environment. The final purpose of the work is to implement a web-based integration design environment with a KBE technique to support non-skillful designers. The framework of the system Is designed to support necessary items in user-centric design environment. Two case studies were applied to the WEB-KBE system to evaluate the efficiency, flexibility, extensibility, and reusability of the system. The examples are [1] CART integration design environment construction and (2) Exhaust Duct Saddle Support integration design environment construction. In the former case, it took a period of 8 months for modeling and implementation of the WEB-KBE prototype system. However, with the high extensibility and reusability of WEB-KBE system, the second case required only a period of one month for modeling and implementation of the system. We conclude that the presented WEB-KBE system can bring fair effects on implementing a knowledge based design environment in aspect of time and expense.