• 제목/요약/키워드: design wind speed

검색결과 647건 처리시간 0.027초

Wind-lens turbine design for low wind speed

  • Takeyeldein, Mohamed M.;Ishak, I.S.;Lazim, Tholudin M.
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.147-155
    • /
    • 2022
  • This research proposes a wind-lens turbine design that can startup and operate at a low wind speed (< 5m/s). The performance of the wind-lens turbine was investigated using CFD and wind tunnel testing. The wind-lens turbine consists of a 3-bladed horizontal axis wind turbine with a diameter of 0.6m and a diffuser-shaped shroud that uses the suction side of the thin airfoil SD2030 as a cross-section profile. The performance of the 3-bladed wind-lens turbine was then compared to the two-bladed rotor configuration while keeping the blade geometry the same. The 3-bladed wind-lens turbine successfully startup at 1m/s and produced a torque of 66% higher than the bare turbine, while the two-bladed wind-lens turbine startup at less than 4m/s and produced a torque of 186 % higher than the two-bladed bare turbine at the design point. Findings testify that adding the wind-lens could improve the bare turbine's performance at low wind speed.

기상탑 차폐 영향에 따른 측정 풍속의 오차 분석 (The Error Analysis of measuring wind speed on Met Mast Shading Effect)

  • 고석환;장문석;이윤섭
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2011
  • In the performance test for wind turbines of medium and large, The reference met-mast should be installed for measurement reference wind speed as IEC 61400-12-1 standards and design of booms for mounted an anemometer must be considered exactly. Boom-mounted cup anemometer are influenced by flow distortion of the mast and the boom. Therefore design of booms must be important so that flow distortion due to booms should be kept below 0.5%. But, in some cases at size of met-mast structure, the distance of boom from mast is longer then measurement of wind speed is impossible because of oscillation of boom-mounted anemometer. In this paper, We measured a wind speed at several point from mast and boom and we analyzed the error of wind speed at each point of measurement. Also, we will suggest a correction method using the data curve fitting about errors of wind speed between each point of mounted anemometer.

Wind-induced response and loads for the Confederation Bridge -Part I: on-site monitoring data

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.373-391
    • /
    • 2013
  • This is the first of two companion papers that analyse ten years of on-site monitoring data for the Confederation Bridge to determine the validity of the original wind speeds and wind loads predicted in 1994 when the bridge was being designed. The check of the original design values is warranted because the design wind speed at the middle of Northumberland Strait was derived from data collected at shore-based weather stations, and the design wind loads were based on tests of section and full-aeroelastic models in the wind tunnel. This first paper uses wind, tilt, and acceleration monitoring data to determine the static and dynamic responses of the bridge, which are then used in the second paper to derive the static and dynamic wind loads. It is shown that the design ten-minute mean wind speed with a 100-year return period is 1.5% less than the 1994 design value, and that the bridge has been subjected to this design event once on November 7, 2001. The dynamic characteristics of the instrumented spans of the bridge including frequencies, mode shapes and damping are in good agreement with published values reported by others. The on-site monitoring data show bridge response to be that of turbulent buffeting which is consistent with the response predicted at the design stage.

최신 풍속자료를 반영한 기본풍속 산정 (Estimation of Basic Wind Speeds Reflecting Recent Wind Speed Data)

  • 최상현;서경석;성익현;이수형
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.9-14
    • /
    • 2010
  • 최근 기후변화로 인해 태풍강도가 강화됨과 동시에 빈도가 늘어나는 추세이나, 설계기준에 제시된 풍하중 산정식은 1990년대 중반까지 측정된 풍속자료를 근거로 하고 있어 재검토가 필요한 상황이다. 이 논문에서는 1961년부터 2008년까지 전국 76개 관측소에서 측정된 풍속자료를 기초로 통계적 수법을 이용하여 건물, 교량 등 토목구조물의 내풍설계에 적용할 수 있는 기본풍속을 산정하였다. 풍속의 재현기대값은 Gumbel의 적률법에 의해 구하였으며, 풍속측정 지점의 100년 재현기대값을 근거로 지역별 기본풍속을 제안하였다. 지역별로 구해진 결과는 기존의 연구결과 및 설계기준에 제시된 값과의 비교를 통하여 검토하였으며, 설계에 적용할 수 있도록 주요지역의 설계기본풍속을 4개 권역으로 구분하여 제시하였다.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

풍력발전시스템 속도제어의 실험적 고찰 (Investigation of a Speed Control for a Wind Turbin Systsem)

  • 임종환;최민호;허종철;김건훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.36-36
    • /
    • 2000
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is non-linear function of a wind speed, angular velocity, and pitch angle of the blade. The design of a cor_troller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the angular velocity of the blade is constant. For speed control, however, the angular velocity is no longer a constant, so that linearization of the torque in terms of a wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of experiments.

  • PDF

피치제어형 풍력발전시스템의 속도제어 (Speed Control of a Wind Turbine System Based on Pitch Control)

  • 임종환;허종철
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

Geospatial analysis of wind velocity to determine wind loading on transmission tower

  • Hamzah, Nur H.;Usman, Fathoni
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.381-388
    • /
    • 2019
  • This paper described the application of Geospatial Analysis in determining mean wind speed, $V_h$ for wind load calculation imposed to electrical transmission tower structural design. The basic wind speed data on available station obtained from Malaysian Meteorology Department is adjusted by considering terrain and ground roughness factor. The correlation between basic wind speed, terrain factor and ground roughness stated in EN-50341-1 is used to obtain the $V_h$ for overhead transmission line elements 50 m above ground. Terrain factor, $k_r$ and ground roughness, $z_0$ in this study are presented by land use types of study area. Wind load is then calculated by using equation stated in design code EN-50341-1 by using the adjusted mean wind speed. Scatter plots of $V_h$ for different $k_r$and $z_0$ are presented in this paper to see the effect of these parameters to the value of $V_h$. Geospatial analysis is used to represent the model of $V_h$. This model can be used to determine possible area that will subject to wind load which severe to the stability of transmission tower and transmission line.

해상풍력 구조물 설계를 위한 풍황 특성분석 (Analysis on wind condition characteristics for an offshore structure design)

  • 서현수;경남호;;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.262-267
    • /
    • 2008
  • The long-term wind data are reconstructed from the short-term meteorological data to design the 4 MW offshore wind park which will be constructed at Woljeong-ri, Jeju island, Korea. Using two MCP (Measure-Correlate-Predict) models, the relative deviation of wind speed and direction from two neighboring reference weather stations can be regressed at each azimuth sector. The validation of the present method is checked about linear and matrix MCP models for the sets of measured data, and the characteristic wind turbulence is estimated from the ninety-percent percentile of standard deviation in the probability distribution. Using the Gumbel's model, the extreme wind speed of fifty-year return period is predicted by the reconstructed long-term data. The predicted results of this analysis concerning turbulence intensity and extreme wind speed are used for the calculation of fatigue life and extreme load in the design procedure of wind turbine structures at offshore wind farms.

  • PDF

해안지역 교량 설계풍속 산정 가이드라인 (Guideline for Bridge Design Wind Speed in Coastal Region)

  • 이승수;김준영;김영민
    • 한국전산구조공학회논문집
    • /
    • 제28권6호
    • /
    • pp.615-623
    • /
    • 2015
  • 최근 구조물이 장대화됨에 따라 풍하중의 중요성이 대두되고 있으며, 풍속에 영향을 미치는 지표조도 및 지형에 의한 할증효과를 합리적으로 반영한 기본풍속 산정절차에 대한 가이드라인의 필요성이 증대되고 있다. 국내의 많은 설계기준에서는 기본풍속 산정에 대한 절차를 제시하고 있으며, 전국의 기본풍속 지도 또는 표를 제공하여 이를 사용하도록 하고 있다. 하지만 제시된 기본풍속의 산정 방법 및 사용데이터는 풍속을 평가함에 있어 반영해야 하는 부분 중 일부만 반영하거나, 도로교설계기준(MOLTMA, 2010)의 경우 불분명한 실정이다. 본 연구에서는 국내의 설계기준에서 제시하고 있는 전국 기본풍속에 대해 한계점을 분석하였다. 또한 이러한 문제를 개선하기 위해 지표조도 및 지형할증의 영향을 반영한 기본풍속 산정절차에 대한 가이드라인을 제시하였으며. 이 절차에 따라 전국 15개 지점의 기본풍속을 산정하여, 도로교설계기준에서 제시하고 있는 기본풍속과 비교하였다.