• Title/Summary/Keyword: design strength

Search Result 7,743, Processing Time 0.031 seconds

Study on Applicability of Ultimate Strength Design Formula for Sandwich Panels - Application Cases of Double Hull Tanker Bottom Structures

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • In this study, ultimate strength characteristics of clamped sandwich panels with metal faces and an elastic isotropic core under combined in-plane compression and lateral pressure loads are investigated to verify the applicability of the ultimate strength design formula for ship structures. Alternative elastomer-cored steel sandwich panels are selected instead of the conventional bottom stiffened panels for a Suezmax-class tanker and then the ultimate strength characteristics of the selected sandwich panels are examined by using nonlinear finite element analysis. The change in the ultimate strength characteristics due to the change in the thickness of the face plate and core as well as the amplitude of lateral pressure are summarized and compared with the results obtained by using the ultimate strength design formula and nonlinear finite element analysis. The insights and conclusions developed in the present study will be useful for the design and development of applications for sandwich panels in double hull tanker structures.

Direct strength method for high strength steel welded section columns

  • Choi, Jong Yoon;Kwon, Young Bong
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.509-526
    • /
    • 2018
  • The direct strength method adopted by the AISI Standard and AS/NZS 4600 is an advanced design method meant to substitute the effective width method for the design of cold-formed steel structural members accounting for local instability of thin plate elements. It was proven that the design strength formula for the direct strength method could predict the ultimate strength of medium strength steel welded section compressive and flexural members with local buckling reasonably. This paper focuses on the modification of the direct strength formula for the application to high strength and high performance steel welded section columns which have the nominal yield stress higher than 460 MPa and undergo local buckling, overall buckling or their interaction. The resistance of high strength steel welded H and Box section columns calculated by the proposed direct strength formulae were validated by comparison with various compression test results, FE results, and predictions by existing specifications.

Strength Estimation of Stylene-Butadien Latex Modified Concrete by Factorial Experimental Design (요인 실험분석에 의한 SB 라텍스 개질 콘크리트의 강도예측)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Hong, Chang-Woo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.307-315
    • /
    • 2001
  • The purpose of this study was to provide the evaluation and prediction of strengths of SB latex modified concrete(LMC) using a statistical method and factorial experimental design method. The main experimental variables were as follows ; W/C ( 4 levels ; 31, 33, 35, 42%), S/a( 2 levels ; 55, 58%) and L/C(2 levels ; 5, 15%). The compressive strength and flexural strength of LMC were selected as a factor of response. The statistical method was carried out to analyze the results, together with factorial experimental design method and response surface method. The analysis showed that if L/C had been 15%, W/C appeared to be around 33% to achieve the design strength of $350kgf/cm^2$. In this case, the flexural strength and the slump came to around $68kgf/cm^2$ and 18cm, respectively. Eventhough the L/C varied, the design strength and W/C could be predictable together with slump value and flexural strength. As a result of series of experiments in this study, W/C and L/C were proved to be the main factors influencing on the compressive and flexural strength of LMC. Both of strength and slump values could be predictable from the mixing proportion of LMC.

  • PDF

Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design (콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향)

  • 윤영묵;석철호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

Structural analysis of Rubber Tired AGT (고무차륜 경량전철의 구조강도 해석 연구)

  • 구정서;한형석;송달호
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.193-199
    • /
    • 2001
  • In this study, the carbody design of the rubber tired AGT(Automated Guide-way Transit System) under development by KRRI was numerically analysed to evaluate its structural strength according to the standard specifications for Korean LRT (Light Rail Transit). The numerical results showed that the detail design of the carbody was strong enough to satisfy the specifications with respect to the axial compression strength, the vertical strength and the vertical stiffness(natural frequency). However, the carbody design had some problems on the fatigue strength by twist loadings. So, it was recommended that the carbody design should be modified to improve the twisting strength by reinforcing the front end structures.

  • PDF

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

A study on the Development of the Mix Design System for High-Strength Concrete. (고강도 콘크리트의 배합설계 시스템 개발에 관한 연구)

  • 오호진;장판기;박훈규;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.719-724
    • /
    • 1998
  • It is proposed in this paper to develop the rational mix design system of High-strength concrete which is adjusted in the domestic circumstances. 1) Collect a lots of data in order to introduce the optimum mix design which has relation among material variables which compose High-strength concrete and run by using SAS (Statistical analysis system) which is one of multivariate statistical analysis method. 2) Select the important material variables for mix design of High-strength concrete by major component analysis and propose the standard range of each material variable along the target strengths. From the results of this study, it was proposed the range of proper material variables in domestic circumstance, which are W/C, S/A, air and admixture amounts, etc, at the target strengths for concrete kind. Also it was developed the optimum mix design program of High-strength concrete according to target strength and size of aggregate and made mix design ease in domestic construction site.

  • PDF

A Study the Development of Involute Spur Gears Profiles Strength (인벌류트 스퍼기어 치형 강도에 관한 연구)

  • Cho, Seong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.269-276
    • /
    • 2006
  • Strength Design method for involute spur gears is developed. The developed gear strength design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is matrix form which is developed from this study. Design variables are transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Gear design method developed this study can be apply to the gears of plants, machine tools, automobiles.

  • PDF

Effect of plate properties on shear strength of bolt group in single plate connection

  • Ashakul, Aphinat;Khampa, Kriangkrai
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.611-637
    • /
    • 2014
  • A single plate shear connection, or shear tab, is a very popular shear connection due to its merit in ease of construction and material economy. However, problems in understanding the connection behavior, both in terms of strength and ductility, have been well-documented. Suggestions or design model for single plate connections in AISC Design Manual have been altered several times, with the latest edition settling down to giving designers pre-calculated design strength tables if the connection details agree with given configurations. Results from many full-scale tests and finite element models in the past suggest that shear strength of a bolt group in single plate shear connections might be affected by yield strength of plate material; therefore, this research was aimed to investigate and clarify effects of plate yield strength and thickness on shear strength of the bolt group in the connections, including the validity of using a plate thickness/bolt diameter ratio ($t_p/d_b$) in design, by using finite element models. More than 20 models have been created by using ABAQUS program with 19.0- and 22.2-mm A325N bolts and A36 and Gr.50 plates with various thicknesses. Results demonstrated that increase of plate thickness or plate yield strength, with the $t_p/d_b$ ratio remained intact, could significantly reduce shear strength of the bolt group in the connection as much as 15 percent. Results also confirmed that the $t_p/d_b$ ratio is a valid indicator to be used for guaranteeing strength sufficiency. Because the actual ratio recommended by AISC Design Manual is $t_p/d_b$ + 1.6 (mm) for connections with a number of bolts less than six and plate yield strength in construction is normally higher than the nominal value used in design, it is proposed that shear strength of a bolt group in single plate connections with a number of bolts equal or greater than seven be reduced by 15 percent and the $t_p/d_b$ ratio be limited to 0.500.

Minimum deformability design of high-strength concrete beams in non-seismic regions

  • Ho, J.C.M.;Zhou, K.J.H.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.445-463
    • /
    • 2011
  • In the design of reinforced concrete (RC) beams, apart from providing adequate strength, it is also necessary to provide a minimum deformability even for beams not located in seismic regions. In most RC design codes, this is achieved by restricting the maximum tension steel ratio or neutral axis depth. However, this empirical deemed-to-satisfy method, which was developed based on beams made of normal-strength concrete (NSC) and normal-strength steel (NSS), would not provide a consistent deformability to beams made of high-strength concrete (HSC) and/or high-strength steel (HSS). More critically, HSC beams would have much lower deformability than that provided previously to NSC beams. To ensure that a consistent deformability is provided to all RC beams, it is proposed herein to set an absolute minimum rotation capacity to all RC beams in the design. Based on this requirement, the respective maximum limits of tension steel ratio and neutral axis depth for different concrete and steel yield strengths are derived based on a formula developed by the authors. Finally for incorporation into design codes, simplified guidelines for designing RC beams having the proposed minimum deformability are developed.