• Title/Summary/Keyword: design spectrum compatible

Search Result 59, Processing Time 0.029 seconds

A Proposal of Reference Power Spectral Density Functions Compatible with Highway Bridge Design Specta (도로교 내진설계 스펙트럼에 부합하는 표준 PSD함수의 제안)

  • Choi, Dong Ho;Lee, Sang Hoon;Koh, Jung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.59-67
    • /
    • 2008
  • Acceleration time history used in the seismic analysis of nuclear power plant structures should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. The safety for complex long-span highway bridges cannot be over-emphasize. An alternative method to improve the seismic capacity is to ensure the minimum PSD function of the applied seismic load. This study proposes a technical scheme to obtain the reference power spectral density function by using artificial earthquakes which are compatible with the highway bridge design spectrum.

Evaluation of Ground Motion Modification Methodologies for Seismic Structural Damage (지진 구조 손상도 예측을 위한 지반 운동 수정법 평가)

  • Heo, YeongAe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2013
  • The selection of appropriate ground motions and reasonable modification are becoming increasingly critical in reliable prediction on seismic performance of structures. A widely used amplitude scaling approach is not sufficient for robust structural evaluation considering a site specific seismic hazard because only one spectral value is matched to the design spectrum typically at the structural fundamental period. Hence alternative approaches for ground motion selection and modifications have been suggested. However, there is no means to evaluate such methodologies yet. In this study, it is focused to describe the main questions resided in the amplitude scaling approach and to propose a regression model for structural damage as point of comparison. Spectrum compatible approach whose resulting spectrum matches the design spectrum at the entire range of the structural period is considered as alternative to be compared to the amplitude scaling approach. The design spectrum is generated according to ASCE7-05.

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF

Generation of Design Spectrum Compatible Ground Motion in Time Domain (시간영역에서 생성되는 설계응답스펙트럼 맞춤형 지진파 생성)

  • Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1250-1257
    • /
    • 2009
  • Due to the improvement of the seismic hazard analysis method and the design code, dynamic analysis method is widely used. To conduct dynamic analysis, various coefficients should be designated. The time history acceleration is one of the most essential factor. However, strong earthquake motion data from the outside of the country have been used to conduct dynamic analysis without considering of the ground motion parameters. In this study, the methodology to choose appropriate input motion is developed by using time domain design spectrum matching procedure. Two examples are applied to verify the methodology. The Result shows that the methodology satisfies seismic circumstances and the design code.

  • PDF

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

Nonlinear Response Spectra of Artificial Earthquake Waves Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진파에 의한 비선형 응답 특성의 분석)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.63-71
    • /
    • 2006
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the nonlinear response spectra by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design spectra in the range of period from 0.02 to 10.0 seconds. The seismic response analysis is performed to examine the nonlinear response characteristics of SDOF system subjected to the simulated earthquake waves. It was concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

A Study on the Seismic Design for Water Exthinguishing Piping Systems (수계 파이프 시스템의 내진설계에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.10-15
    • /
    • 2008
  • In this study, seismic design in sprinkler head pipeline of water extinguishing system has been carried out. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also analyzed the dynamic response spectra by the simulated earthquake motion. This study constructed powerful engineering base for seismic design, and presented seismic design techniques of water and gas extinguishing piping system. Also, this study readied basis that can apply seismic design and performance estimation of fire fighting system and performance rating as well as pipeline of water extinguishing system from result of this research. Hereafter, if additional research by earthquake magnitude and ground kind is approached, reliance elevation, safety raising and performance based design of fire fighting system see to achieve.

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.