• 제목/요약/키워드: design provisions

검색결과 460건 처리시간 0.021초

노인주택 가구 디자인의 지침 비교 (A Comparative Study on Furniture Design Guidelines for the Elderly)

  • 이지숙
    • 한국생활과학회지
    • /
    • 제16권6호
    • /
    • pp.1243-1250
    • /
    • 2007
  • The purpose of this study was to compare government guidelines and foreign guidelines related to furniture design for elderly. Future elderly will increasingly accustomed to the provisions of improved housing, education and welfare in comparison with our forebears. Also, there will be upgrading and different need for elderly furniture in our market. The results were as follows. The height of bed was based on the height of wheelchair seat, commonly. A adjustable bed was recommended for abled and disabled elderly. A pull-down shelf, drawer, empty space under chest, folding or sliding door in wardrobe and so on were recommended as a elderly furniture. It were good adjustable sink on human scale. There were need the empty space under sink for wheelchair users, one-touch or lever faucet, etc. There have given a little furniture design guidelines for elderly in Korea until now. But those guidelines haven't been considered enough human scale of elderly including wheelchair user. Because the close investigations have not made about abled and disabled elderly for their furniture design. So first of all, the government should be examined elderly physical size more accurately for elderly furniture design. The guideline for elderly furniture design should be for abled elderly and the disabled, too.

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰 (Investigation on Seismic Design Component and Load for Nonstructural Element)

  • 최인섭;이주희;손정훈;김준희
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

복합 트러스 교량의 연결구조에 대한 실험적 연구 (An Experimental Study on Joint Structures of Composite Truss Bridges)

  • 심창수;박재식;김광수
    • 한국강구조학회 논문집
    • /
    • 제19권3호
    • /
    • pp.303-312
    • /
    • 2007
  • 경간 40m~100m 정도 경간에 대해 일반적으로 강 박스 거더교에 대한 설계가 이루어지고 있다. 상부구조의 자중을 줄이기 위해서 복합트러스 교량에서 복부의 콘크리트 웹 대신에 강 사재가 사용되고 있다. 이러한 복합트러스 교량의 설계 시 가장 중요한 부분 중의 하나가 콘크리트 상 하부를 연결하는 연결부의 형태이다. 이러한 접합부는 외부에서 작용하는 조합하중을 분담해야하는데, 아직 이러한 접합구조에 대한 명확한 설계기준이 없는 실정이다. 한계상태에서 격점부의 하중전달에 대한 명확한 연구와 설계방법에 대한 조사가 필요하다. 콘크리트 상 하부를 연결하는 격점부 사재는 다양한 연결형태가 있다. 이번 논문에서는 거셋 플레이트에 용접되어진 그룹 스터드 연결재에 관한 연구가 수행되었다. 25mm 절곡 스터드를 사용하여 수행된 전단실험을 통하여 현재의 스터드 간 최소기준 간격을 만족하는 상태에서는 현재의 설계 규정을 사용할 수 있음을 밝혔다. 휨-전단 실험을 통해서는 조합하중이 작용하는 격점부의 상세를 개선하였다. 격점부의 인발강도를 증진시키기 위해서 절곡 스터드가 제안되었고 그룹 스터드의 최 외측 스터드에 적용되었다. 이러한 결과들을 바탕으로 복합 트러스 교량의 개선된 격점부 상세가 개선되고 설계 방안이 제안되었다.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.

L.R.B.를 이용한 면진설계의 내지진 안전성 연구 (Study on Seismic Resistant Safety of Seismic Isolation Design for Bridge using L.R.B.)

  • 이철희;신재인
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2002
  • Due to few earthquakes in our country, one generally has thought to be safe from earthquakes. However, severe earthquakes occurred in Dangsan and Hyogohyeon which one had regarded as the zone that had not been risky for earthquakes, so that so many people died and a lot of buildings and bridges were destroyed. This event surprised our country and we undertook preparation for earthquakes on the full scale. The concept of seismic design was induced in the country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently, many specialists are enforcing the provisions of seismic design. Therefore, this study introduces the method which combines PC-LEADeR( design program for L.R.B.) with LUSAS(linear elastic analysis) and performs the seismic isolation design more elaborately and simply. It verifies the propriety of that method, and it also examine the factors that affect the response of the bridges. Seismic isolation design for bridge using L.R.B. provides both economical efficiency and superior seismic performance. Second, the results between by the method proposed and by time history analysis have 20% error at the maximum. That is, the method proposed very appropriate.

국내·외 구급차 규정, 디자인 및 개선에 관한 조사연구 (An Investigation of the Regulation, Design and Improvement of Domestic and International Ambulances)

  • 신동민;김승용;한용택
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.172-179
    • /
    • 2014
  • This research suggests that the regulation, design and improvement of domestic and international ambulances so that make the basis for the future ambulance in Korea. It is true that the diversification of current disasters, increasing elderly population, the increase in emergency patients, due to the lack of effective transfer system, emergency vehicle's performance problem, and the aging of ambulances cause have difficulty in providing effective emergency services in domestic country. Therefore, in order to improve the effectiveness of ambulance, the history of ambulance, other relevant provisions include international, design and directions to be improved were investigated, and also research directions of the ambulance are suggested in domestic country. In this research, suggests the following conclusions to improve domestic ambulance 1. Through standardization of the spacing and location of an ambulance is needed to maximize the treatment room. 2. The interior of the ambulance design for hygiene and infection control should be included. 3. Stretcher and equipment are designed to be fitted to each other should be standardized. 4. Especially during transfer maintain the road, noise, vibration, and shock-absorbing function to emphasize the importance. 5. The improvement of ergonomic design is necessary for the possibility of applying to many people.

현행(現行) 허용응력설계법(許容應力設計法)으로 설계(設計)되는 RC 휨부재(部材)의 신뢰성(信賴性)과 안전율(安全率) 고찰(考察) (An Investigation of Reliability and Safety Factors in RC Flexural Members Designed by Current WSD Standard Code)

  • 신현묵;조현남;정환호
    • 대한토목학회논문집
    • /
    • 제1권1호
    • /
    • pp.33-42
    • /
    • 1981
  • 현행(現行) 철근(鐵筋)콘크리트 표준시방서(標準示方書)는 WSD와 USD의 재래적(在來的)인 두 가지 설계편(設計編)으로 구성(構成)되어 있는데 이들 설계기준(設計基準)은 ACI 318-63 및 318-71 Code에 기초를 두고 있다. 이와 같이 주로 ACI 318-63 시방서(示方書)에 기초를 둔 우리의 WSD와 USD의 안전율(安全率)은 우리의 설계(設計) 및 시공실무(施工實務)에 비(比)해 부적절(不適切)한 것으로 받아들여지고 있다. 더구나 ACI의 안전율(安全率)도 확률적(確率的)으로 결정(決定)된 것이 아니고 주로 경험(經驗)과 현실성(現實性)을 고려하여 결정(決定)된 것이다. 본(本) 연구(硏究)는 현행(現行) 허용응력설계(許容應力設計) 안전율규정(安全率規定)으로 설계(設計)되는 휨 부재(部材)의 안전수준(安全水準)을 2차(次)모멘트 신뢰성이론(信賴性理論)에 의해 고찰(考察)하고, 일관성(一貫性)있는 목표신뢰성(目標信賴性)을 제공(提供)하는 철근(鐵筋) 및 콘크리트의 공칭안전율(公稱安全率)과 휨 허용응력(許容應力)을 합리적(合理的)이고도 효율적(效率的)으로 결정(決定)하는 방법(方法)을 제안(提案)하였다. Cornell의 제(第)1계(階) 이차(二次)모멘트법(法)을 하중(荷重)과 저항(抵抗) 결과변화(結果變化)의 대수변환(對數變換)에 의해 적용(適用)하는 방법(方法)을 본(本) 연구(硏究)의 신뢰성해석법(信賴性解析法)으로 사용하였다. 최적(最適) 철근비(鐵筋比)를 갖는 극한강설계(極限强設計)의 과소철근(過少鐵筋)보에 대응하는 균형철근비(均衡鐵筋比)로 설계(設計)되는 균형단면(均衡斷面)이 되도록 하는 독특한 방법으로 콘크리트의 허용압축응력(許容壓縮應力)을 유도하였다. 우리의 시공(施工) 및 설계실무(設計實務)의 수준(水準)에 적합(適合)한 ${\beta}_0=4$를 안전율(安全率) 결정(決定)을 위한 목표신뢰성지수(目標信賴性指數)로 택하였다. 현행(現行) WSD 시방서(示方書)로 설계(設計)되는 RC 휨 부재(部材)의 안전(安全) 및 신뢰성(信賴性)을 여러 수치계산(數値計算)을 통해 고찰(考察)해본 결과(結果), 현행(現行) WSD 기준(基準)에 의한 설계(設計)는 비정당적(非定當的)이며 일관성(一貫性)없는 신뢰성(信賴性)으로 인하여 비경제적(非經濟的)인 설계(設計)도 된다는 사실(事實)을 알 수 있었다. 적절(適切)한 목표신뢰성지수(目標信賴性指數) ${\beta}_0=4$에 따른 휨 부재(部材)의 철근(鐵筋)과 콘크리트의 합리적(合理的)인 허용응력(許容應力)을 본(本) 연구(硏究)의 신뢰성이론(信賴性理論)에 의해 제안(提案)하였다.

  • PDF

Determination of bearing type effect on elastomeric bearing selection with SREI-CAD

  • Atmaca, Barbaros;Ates, Sevket
    • Advances in Computational Design
    • /
    • 제2권1호
    • /
    • pp.43-56
    • /
    • 2017
  • The aim of this paper is to develop software for designing of steel reinforced elastomeric isolator (SREI) according to American Association for State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) Specifications. SREI is used for almost all bridge types and special structures. SREI-structures interface defines support boundary conditions and may affect the seismic performance of bridges. Seismic performance of the bridge is also affected by geometrical and materials properties of SREI. The selection of SREI is complicated process includes satisfying all the design constraints arising from code provisions and maximizing performance at the lowest possible cost. In this paper, design stage of SREI is described up to AASHTO LRFD 2012. Up to AASHTO LRFD 2012 analysis and design program of SREI performed different geometrical and material properties are created with C# object-oriented language. SREI-CAD, name of the created software, allows an accurate design for economical estimation of a SREI in a short time. To determine types of SREI effects, two different types of bearings, rectangular and circular with similar materials and dimension properties are selected as an application. Designs of these SREIs are completed with SREI-CAD. It is seen that ensuring the stability of circular elastomer bearing at the service limit state is generally complicated than rectangular bearing.