• Title/Summary/Keyword: design of concrete structures

Search Result 1,965, Processing Time 0.031 seconds

Development of an Activity-Based Conceptual Cost Estimating Model for P.S.CBox Girder Bridge (대표공종 기반의 P.S.C 박스 거더교 개략공사비 산정모델 개발 -상부공사 중심으로-)

  • Cho, Ji-Hoon;Kim, Sang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.197-201
    • /
    • 2008
  • Conceptual cost estimates for domestic highway projects have generally been conducted using governmental unit-price references. Inaccuracies in governmental unit-price data has repeatedly addressed in the Korean construction industry which often lead to poor decision making and cost management practices. Thus, needs for developing a better way of conceptual cost estimating has been widely recognized. This research is considered as the first step in developing such model using real-world cost data based on actual construction activities. The data analyzed in this paper includes 41 P.S.C (Prestressed Concrete) Box bridges which broke into 4 categories based on construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). Actual design documents; including actual cost estimating documents, drawings and specifications were carefully reviewed to effectively break down cost structures for PSC girder bridges. Among more than 40 cost categories for each P.S.C girder bridge type, 7 of them were identified which accounted for more than 95% of total construction cost (ILM: 99.47%, MSS: 99.22%, FSM: 98.18%, and FCM: 98.12%). In order to validate the clustering of cost categories, the variation of each cost category has been investigated which resulted in between -1.16 % and 0.59%.

  • PDF

Cyclic Lond Testing for Strong Axis Joints Connected with SRC Column and RC Beams (SRC기둥-RC보 강축 접합부 상세의 구조성능 평가)

  • Moon, Jeong-Ho;Lee, Kang-Min;Lim, Jae-Hyung;Oh, Kyung-Hwan;Kim, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2007
  • The objective of this research is to provide better knowledge on the behavior of strong axis SRC column-RC beam joint, supported by experimental results, that can be broadly applicable to many structures. For this purpose, firstly literature reviews and field survey were made to classify the most commonly used for these types of joints. Then, experimental program was designed and performed including 6 SRC column-RC beam joint specimens designed with various joint details. Using the experimental results obtained from the quasi-static cyclic tests, structural performances of the joints such as hysteretic curves, maximum strength capacities, strength degradation beyond the maximum strength, ductilities, and energy dissipation capacities were investigated. Test results showed that specimens with wide beam shape (RCW-P, RCW-W, RCW-F) and T beam shape (RCT-W) showed better structural performances than the bracket type specimens (HBR-L, HBR-S). These specimens also revealed to have higher strength capacities than the nominal design strength. However, H beam bracket type specimens (HBR-L, HBR-S) need further study both analytically and experimentally to verify the reason for unexpected structural performances.

Development of a new armor unit against high waves (고파랑 대응 신형 소파블록 개발)

  • Park, Young Hyun;Youn, Daeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.737-743
    • /
    • 2016
  • Coastal hazards such as high waves are expected to increase due to global climate change. Therefore, we investigated new armor unit structures for disaster prevention. Recently, a concrete caisson has been used in many breakwaters against high waves in South Korea, but the demand for concrete armor unit has increased due to the high cost and many installation requirements. Though many new armor units have been developed over the world since Tetrapod in 1950, few have been used due to lack of systematical development. The representative armor units in current use have many advantages, but they cannot be applied to waves higher than 8 m. One of the new armor units developed by the design guide based on recent trend and hydraulic model experiments were conducted. The new armor unit was developed as a single layer due to cost effectiveness. However, the thickness is close to 1.5 times by overlapping the alphabet A and V. It showed higher overtopping compared to a double layer because of the thickness and the high packing density. It has a high interlocking vertically but low horizontally. It shows good stability at 9 m in model testing.

Transverse Reinforcement for Circular Internally Confined Hollow RC column (원형 내부 구속 중공 RC 기둥의 심부 구속 횡방향 철근 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Woo Sun;Park, Jong Sub;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.927-935
    • /
    • 2013
  • Recently, bridge structures has progressed the researches about seismic performance by occurrence of earthquake increased compared with the past. In the substructure of bridge, confining transverse reinforcement has arranged in plastic hinge region to resist the lateral load which increased the lateral confining effect. Columns are increased the seismic performance through secure of the stiffness and ductility The design specification for arrangement of confining transverse reinforcement same specification of domestic and international that suggested to solid reinforced concrete column(RC). This design specification have limits for Internally Confined Hollow RC(ICH RC) column because of different the component and performance characteristics of column. In this paper suggested the modified equation for economics and rational design through investigation of displacement ductility when applied the existing specification at the steel composite hollow RC column.

Experimental Study on Evaluation of Rotational Resistance of Multi-Span Greenhouse Foundations (연동비닐하우스 기초의 회전저항성능 평가에 관한 실험적 연구)

  • Lee, Hyunjee;Shin, Jiuk;Kim, Minsun;Choi, Kisun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.5-12
    • /
    • 2018
  • The foundation of the multi-span greenhouse structures is designed with small shallow concrete foundation considering mainly the vertical load. However, recently, due to an abnormal climate such as strong wind, horizontal load and up-lift load over design strength are applied to the foundation, causing safety problems of the greenhouse foundation. In order to reasonably evaluate the safety of greenhouse foundations, rotational and pullout stiffness expressed by the ground-foundation interaction should be evaluated, which also affects the safety of the upper structural members. In this study, three representative basic foundation types were selected by classifying greenhouse standards in Korea according to the shape, and the horizontal loading tests and theoretical calculation were performed for each foundation type. As a result of the comparison and analysis of the test and calculation, it was found that rotational resistance of the foundation is different according to the ratio of the contact area between the foundation and ground when the conditions of the foundation - ground contact surface and the mechanical properties of the ground are the same.

An Analytical Study on the Buckling of Orthotropic Plates and Local Buckling of Compression Members (직교이방성 판의 좌굴 및 압축재의 국부좌굴에 대한 해석적 연구)

  • Choi, Jin-Woo;Lee, Kang-Yeon;Park, Jung-Hwan;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we present the analytical study results pertaining to the buckling of the orthotropic plates and local buckling of structural compression members composed of orthotropic plate components. Fiber reinforced polymeric plastic (FRP) materials, have many advantages over conventional structural materials such as steel and concrete. The advantages of the FRP materials are high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic (tranversely isotropic, more specifically) material. However, pultruded fiber reinforced plastic structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. In this paper, the buckling of orthotropic plates and the local buckling of pultruded FRP structural members are investigated by following the previous research results and the local buckling strength of the member produced in the domestic manufacturer is found.

Cyclic Loading Test for Exposed Column-base Plate Connections of Small-size Steel Structures (소규모 철골조 노출형 주각부의 반복가력 실험)

  • Lim, Woo-Young;You, Young-Chan;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2017
  • Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.

Experimental Analysis of Korean and CPMP Textbooks: A Comparative Study (한국과 미국의 교과서 체제 비교분석)

  • Shin, Hyun-Sung;Han, Hye-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.2
    • /
    • pp.309-325
    • /
    • 2009
  • The purpose of the study was to investigate the differences between Korean mathematics textbooks and CPMP textbooks in the view of conceptual network, structure of mathematical contents, instructional design, and teaching and learning environment to explore the implications for mathematics education in Korea. According to the results, Korean textbooks emphasized the mathematical structures and conceptual network, on the other hand, CPMP textbooks focused on making connections between mathematical concepts and corresponding real life situations as well as mathematical structures. And generalizing mathematical concepts at the symbolic level was very important objective in Korean textbooks, but in the CPMP textbooks, investigating mathematical ideas and solving problems in diverse contexts including real- life situations were considered very important. Teachers using Korean textbooks preferred an explanatory teaching method with the use of concrete manipulatives and student worksheet, however, teachers using CPMP textbooks emphasized collaborative group activities to communicate mathematical ideas and encouraged students to use graphing calculators when they explore mathematical concepts and solve problems.

  • PDF

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

A Study for Improving in Greening System and Method to Revitalize Wall-planting (벽면녹화 활성화를 위한 제도적 개선방안 및 조성방향에 관한 연구)

  • Han, Seung-Ho;Kim, Sun-Hae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.59-71
    • /
    • 2006
  • Due to the rapid process of industrialization the cities of Korea confront changes of climate, destructions of the habitate and decrease of the green. Recently Seoul and other local governments have implemented policies and projects to improve the environmental surroundings. In reality, however, those policies and projects face difficulties in the course of implementation. The fact that there are no concrete regulations and specific legal procedures turns out to be one of the main difficulties. The aim of this study is to present specific plans and methods of wall-planting and to provide basic guidelines for the future direction of wall-planting and offer ideas of facilitating wall-planting. This study is based on questionnaires from specialists of landscape architecture through individual interviews and/or e-mails. The questionnaire is consisted of following 4 sections. 1. Show the experts current regulations and/or legal procedures and ask them improvements and suggestions. 2. Ask them choose matters of the highest priority by using Ricardo's diagram method. 3. Ask them to make a graded list in terms of the location and method of wall-planting. 4. Study the maketability of the wall-planting products currently in circulation. The city of Seoul and the Ministry of Environment recommend that trellis and/or planting inducement structures be installed on the building wall by regulation. The specialists responded to the questionnaire advocate that green wall without trellis should be allowed as green zone. Therefore regulations concerning the wall-planting should be determined specifically according to the characteristics of individual plants and walls. It has been urged that legal aid and social support must be reinforced to establish rules dealing with wall-planting. The respondents also point out that significant cutting down of the tax is far more effective in accelerating the wall-green instead of administrative support. The highest priority in terms of planting has been given to sound-proof wall, retaining wall and building wall. Concerning the maketability of the wall-planting products, panel products are recommended for early-planting and building planting. It has been suggested that the research and study of new materials and species be done in advance.