• 제목/요약/키워드: design history based approach

검색결과 115건 처리시간 0.029초

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

설계이력 정보를 이용한 CAD모델의 오류 수정 (Healing of CAD Model Errors Using Design History)

  • 양정삼;한순흥
    • 한국CDE학회논문집
    • /
    • 제10권4호
    • /
    • pp.262-273
    • /
    • 2005
  • For CAD data users, few things are as frustrating as receiving CAD data that is unusable due to poor data quality. Users waste time trying to get better data, fixing the data, or even rebuilding the data from scratch from paper drawings or other sources. Most related works and commercial tools handle the boundary representation (B-Rep) shape of CAD models. However, we propose a design history?based approach for healing CAD model errors. Because the design history, which covers the features, the history tree, the parameterization data and constraints, reflects the design intent, CAD model errors can be healed by an interdependency analysis of the feature commands or of the parametric data of each feature command, and by the reconstruction of these feature commands through the rule-based reasoning of an expert system. Unlike other B Rep correction methods, our method automatically heals parametric feature models without translating them to a B-Rep shape, and it also preserves engineering information.

자동차산업에서 제품데이터품질 향상을 위한 연구 (A Study on Product Data Quality Assurance for Automotive Industry)

  • 양정삼;한순흥;강혜정;김준기
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.184-193
    • /
    • 2005
  • Digital representations of products and parts have largely replaced physical drawings as the form in which product data are stored, analyzed, and communicated among the people contributing to the design of an automobile. Many individuals and companies participate in the design of an increasingly complex automobile; hence, the design process depends critically on team members' ability to share information about essential design elements. These trends have elevated the importance of the quality of product data and its efficient exchange. In this paper, we show state-of-the-art on Product Data Quality(PDQ), and activities of PDQ assurance. And we propose a novel design history-based approach for diagnosis and healing of a CAD model.

전문가시스템을 이용한 CAD 모델 수정 시스템 (A CAD Model Healing System with Rule-based Expert System)

  • 한순흥;천상욱;양정삼
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.219-230
    • /
    • 2006
  • Digital CAD models are one of the most important assets the manufacturer holds. The trend toward concurrent engineering and outsourcing in the distributed development and manufacturing environment has elevated the importance of high quality CAD model and its efficient exchange. But designers have spent a great deal of their time repairing CAD model errors. Most of those poor quality models may be due to designer errors caused by poor or incorrect CAD data generation practices. In this paper, we propose a rule-based approach for healing CAD model errors. The proposed approach focuses on the design history data representation from a commercial CAD model, and the procedural method for building knowledge base to heal CAD model. Through the use of rule-based approach, a CAD model healing system can be implemented, and experiments are carried out on automobile part models.

Implementation of persistent identification of topological entities based on macro-parametrics approach

  • Farjana, Shahjadi Hisan;Han, Soonhung;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.161-177
    • /
    • 2016
  • In history based parametric CAD modeling systems, persistent identification of the topological entities after design modification is mandatory to keep the design intent by recording model creation history and modification history. Persistent identification of geometric and topological entities is necessary in the product design phase as well as in the re-evaluation stage. For the identification, entities should be named first according to the methodology which will be applicable for all the entities unconditionally. After successive feature operations on a part body, topology based persistent identification mechanism generates ambiguity problem that usually stems from topology splitting and topology merging. Solving the ambiguity problem needs a complex method which is a combination of topology and geometry. Topology is used to assign the basic name to the entities. And geometry is used for the ambiguity solving between the entities. In the macro parametrics approach of iCAD lab of KAIST a topology based persistent identification mechanism is applied which will solve the ambiguity problem arising from topology splitting and also in case of topology merging. Here, a method is proposed where no geometry comparison is necessary for topology merging. The present research is focused on the enhancement of the persistent identification schema for the support of ambiguity problem especially of topology splitting problem and topology merging problem. It also focused on basic naming of pattern features.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

Performance based plastic design of friction damped RC building

  • Mithu Dey;Md Saniyal Alam
    • Advances in concrete construction
    • /
    • 제17권4호
    • /
    • pp.221-232
    • /
    • 2024
  • As a supplemental energy dissipation device, friction dampers are widely employed to augment the behaviour of buildings under seismic forces. In the current work, a methodology for the design of the friction damping system of RC frame buildings is offered using performance-based plastic design (PBPD) method. Here 2% of maximum interstorey drift ratio for life safety (LS) level is taken into account as a target drift to estimate the design base shear. In this approach, the distribution of friction damper is determined based on the hysteretic energy demand of that storey. Two frames, five storey three bay (5S3B) and eight storey three bay (8S3B) RC frame building with and without friction damping systems are also taken up for the investigation. The suggested design approach is validated by the nonlinear time history analysis (NLTHA) procedure. Inter story drift ratio (ISDR) and storey displacement, which are the more closely related to structural damage during seismic excitation are evaluated. The results show that the friction damping system on a retrofitted RC frame building performs effectively under seismic excitations and that storey displacement and ISDR are within the limit at moderate and high seismic intensities.

Performance based design approach for multi-storey concentrically braced steel frames

  • Salawdeh, Suhaib;Goggins, Jamie
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.749-776
    • /
    • 2016
  • In this paper, a Performance Based Design (PBD) approach is validated for multi-storey concentrically braced frame (CBF) systems. Direct Displacement Based Design (DDBD) procedure is used and validated by designing 4- and 12-storey CBF buildings. Nonlinear time history analysis (NLTHA) is used to check the performance of the design methodology by employing different accelerograms having displacement spectra matching the design displacement spectrum. Displacements and drifts obtained from NLTHA are found to fall within the design displacement limits used in the DDBD procedure. In NLTHA, both tension and compression members are found to be resisting the base shear, $F_b$, not only the tension members as assumed in the design methodology and suggested by Eurocode 8. This is the reason that the total $F_b$ in NLTHA is found to be greater than the design shear forces. Furthermore, it is found that the average of the maximum ductility values recorded from the time history analyses for the 4-and 12-storey buildings are close to the design ductility obtained from the DDBD methodology and ductility expressions established by several researchers. Moreover, the DDBD is compared to the Forced Based Design (FBD) methodology for CBFs. The comparison is carried out by designing 4 and 12-storey CBF buildings using both DDBD and FBD methodologies. The performance for both methodologies is verified using NLTHA. It is found that the $F_b$ from FBD is larger than $F_b$ obtained from DDBD. This leads to the use of larger sections for the structure designed by FBD to resist the lateral forces.

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.