• Title/Summary/Keyword: design ground acceleration

Search Result 291, Processing Time 0.028 seconds

Study on Dynamic Tip-over Analysis of Foldable Electric Wheelchair (접이식 전동휠체어의 동적 전도해석 연구)

  • Jang, Dae-Jin;Kim, Yong-Cheol;Kim, Shin-Ki;Mun, Mu-Sung;Park, Jong-Cheol
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.133-139
    • /
    • 2016
  • An electric wheelchair is a assistive device to maneuver on the ground. Tip-over of an electric wheelchair is increasing every year. Dynamic stability metric test item in KS P 7176 has not ensured safety of electric wheelchair on the slope. This study presents design the foldable electric wheelchair that can load in the car and analysis of tip-over measurement which is easily computed for electric wheelchair. Wheelchair frame is designed with a four-bar link mechanism for a foldable structure, and seat module, battery and power driving module can be separated. This analysis is performed during a maneuver on the ground by force-moment stability metric. Several elements, center of gravity position, rotational radius and acceleration, were evaluated how to affect stability metric. This stability metric can reduce tip-over of wheelchair and provide a clue to make of dynamic stability test item.

Seismic Fragility of Underground Utility Tunnels (지하 공동구 시설물의 지진취약도 분석)

  • Lee, Deuk-Bok;Lee, Chang-Soo;Shin, Dea-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • Damage of infrastructures by an earthquake causes the secondary damage through the world at large more than the damage of the structures themselves. Amomg them, underground utility tunnel structures comes under the special life line: communication, gas, electricity and etc. and it has a need to evaluate its fragility to an earthquake exactly. Therefore, the destruction ability according to peak ground acceleration of earthquakes for the underground utility tunnels is evaluated in this paper. As an input ground motion for evaluating seismic fragilities, real earthquakes and artificial seismic waves which could be generated in the Korean peninsula are used. And as a seismic analysis method, response displacement method and time history analyzing method are used. An limit state which determines whether destruction is based on the bending moment and shear deformation. A method used to deduct seismic fragility curve is method of maximum likelihood and the distribution function is assumed to the log normal distribution. It could evaluate the damage of underground utility tunnels to an earthquake and could be applied as basic data for seismic design of underground utility tunnel structures.

Evaluation Methods of Cyclic Shear Stress Ratio for the Assessment of Liquefaction in Korea (국내 액상화 평가를 위한 진동전단응력비 산정)

  • Yoo, Byeong-Soo;Bong, Tae-Ho;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.5-15
    • /
    • 2019
  • Usually, the cyclic shear stress ratio (CSR) for the assessment of liquefaction has been determined by performing ground response analysis or adopting simplified method suggested by Seed & Idriss with some modifications. In order to analyze the applicability of the CSR evaluation methods, the present study performed one-dimensional equivalent linear analysis and evaluated CSR based on design codes from FHWA, JRA, and KDS. The comparison of the CSR obtained from each code showed that the CSR from KDS showed the largest error with the analysis results. The reason is because KDS has an error, which defines the stress reduction coefficient applying the maximum acceleration at each depth, not the maximum cyclic shear stress mobilized in the soil.

Effects of Slope Location on the Boundary Condition in the 1g Shaking Table Test (1g 진동대시험에서 사면의 위치에 따른 경계조건 영향평가)

  • Jeong, Sugeun;Jin, Yong;Kim, Daeheyon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.535-545
    • /
    • 2022
  • Improving the stability of the ground in seismic design requires an understanding of the dynamic behavior of the ground under seismic loads. The shaking table test is an important methodology to provide this understanding. This study aimed to assess the influence on boundary conditions, as they are among the most important factors affecting the test. This was achieved by testing the influence of boundary conditions on the seismic responses of model slopes at different locations in the testing apparatus. A model slope was fabricated at different locations in a laminar shear box, and the influence of the boundary conditions was then measured. Each model slope was created at 100, 50, and 25 cm from the soil wall, and sine wave seismic loads of the same size were inputted. The results confirmed that the acceleration was amplified by the influence of the boundary in the case of the slope being located 25 cm from the boundary, whereas the influence of the boundary conditions decreased when the slope was located at 50~100 cm.

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyong-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.893-897
    • /
    • 2006
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected. by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve fitted design spectrum.

  • PDF

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution

  • Bastami, Morteza;Kowsari, Milad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.355-372
    • /
    • 2014
  • Considering the history of severe earthquakes and the presence of active faults in the greater Tehran region, the possibility of a destructive earthquake occurring is high and seismic hazard analysis is crucial. Gumbel distributions are commonly-used statistical distributions in earthquake engineering and seismology. Their main advantage is their basis on the largest earthquake magnitudes selected from an equal-time predefined set. In this study, the first asymptotic distribution of extremes is used to estimate seismicity parameters and peak ground acceleration (PGA). By assuming a Poisson distribution for the earthquakes, after estimation of seismicity parameters, the mean return period and the probable maximum magnitude within a given time interval are obtained. A maximum probable magnitude of 7.0 has a mean return period of 100 years in this region. For a return period of 475 years, the PGA in the greater Tehran region is estimated to be 0.39g to 0.42g, depending on local site conditions. This value is greater than that of the Iranian Code for Seismic Design of Buildings, indicating that a revision of the code is necessary.

Liquifaction Evaluation of Saemangeum Area and the Considerations of Liquifaction Effect to the Foundations of Structures in Near Future (I) (새만금 지역의 액상화 평가 및 향후 구조물 기초 설계시 액상화 영향의 고려방안 (I))

  • Kim, You-Seong;Ko, Hyoung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • This study presents the estimation for the possibility of liquefaction according to the liquefaction evaluation methods in Saemangeum reclamation area for tide embankment, Jeollabuk-do, Korea. Liquefaction estimation is performed by cyclic triaxial tests and seismic response analysis using earthquake records of the long- and short-term. This area appears to have greatly potential of liquefaction from the grain-size distribution curve of the dredged and reclaimed soil in the area. Because the liquefaction can occur in this area if the foundations or buried structures are built at a depth within 10m below ground surface, the meticulous care is required in the design of them in the future.