• Title/Summary/Keyword: design ground acceleration

Search Result 291, Processing Time 0.026 seconds

Seismic fragility analysis of a new type of reinforced concrete energy dissipation structure

  • Penghui Yang;Xingwen Liang;Ren Xin;Huajing Zhao
    • Structural Engineering and Mechanics
    • /
    • v.92 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • In order to improve the seismic performance of reinforced concrete (RC) frame structure, high performance fiber reinforced concrete (HPFRC) energy dissipation walls were installed in RC frame to form a new aseismic structure. Two half-scale HPFRC energy dissipation wall-RC frame specimens were designed and constructed. Quasi-static tests were performed to study the failure mechanism, deformation performance, and energy dissipation performance. The test results indicate that HPFRC energy dissipation wall-RC frame structures can achieve the seismic fortification objective of being "repairable after major earthquake". Based on the incremental dynamic analysis (IDA) method, seismic fragility analysis of the HPFRC energy dissipation wall-RC frame structure was performed by using PERFORM-3D structural analysis software and 44 ground motion records. The results show that the HPFRC material has good tensile strain hardening performance, which can improve the damage resistance and energy dissipation capacity of the structure or components. When the structure collapses, the average spectral acceleration response corresponding to the fundamental period of the structure calculated by 44 ground motion records is greater than the spectral acceleration corresponding to the fundamental period of the structure duringa rare earthquake with a fortification intensity of 8 degree, so the HPFRC energy dissipation wall-RC frame structure has good anti-collapse ability. Under the action of a rare earthquake of magnitude 8, the exceeding probability of collapse of the HPFRC energy dissipation wall-RC frame structureis 0.03%, which meets the requirements forseismic protection of the structure under the action of a large earthquake.

Displacement Based Seismic Design of Steel jacket Retrofitted Reinforced Concrete Column (Steel-Jacket 보강 철근콘크리트 기둥의 변위기반 내진설계)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Moon-Ho;Park, Soon-Eung;Nam, Yoo-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.197-198
    • /
    • 2009
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness.

  • PDF

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

Parametric study on the impact of traffic-induced vibrations on residential structures in Istanbul, Turkey

  • A. Yesilyurt;M.R. Akram;A. Can Zulfikar;H. Alcik
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.87-100
    • /
    • 2024
  • Traffic-induced vibrations (TIVs) possess the potential to induce structural damage in both historical and critical edifices. Recent investigations have underscored the adverse impact of TIVs within buildings, manifesting as a deleterious influence on the quality of life and operational efficiency of occupants. Consequently, these studies have dichotomized TIVs into two primary limit categories: the threshold for vibrations capable of causing structural damage and the limit values associated with human comfort. In this current research endeavor, an exhaustive analysis of peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and the frequency spectrum of ground motions originating from diverse traffic sources has been conducted. Furthermore, the detrimental repercussions of these vibrations on structures, gauged through the assessment of the peak particle velocity (PPV) parameter, have been systematically evaluated. The findings of this study elucidate that TIVs within the examined structures do not attain magnitudes conducive to structural compromise; however, the levels surpassing human comfort limits are evident, attributable to specific sources and distances. Moreover, this investigation sheds light on the absence of comprehensive criteria and guidelines pertaining to the assessment of TIVs in structures within the Turkish Building Seismic Design Code 2018. It seeks to raise awareness among building constructors about the critical importance of addressing this issue, emphasizing the imperative for guidelines in mitigating the impact of TIVs on both structural integrity and human well-being.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration (지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동)

  • 유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.21-32
    • /
    • 1999
  • A ground motion resulting from the destructive earthquakes can subject reinforced concrete members to very large forces. The reinforced concrete shear walls are designed as earthquake-resistant members of building structure in order to prevent severe damage due to the ground motions. The current research activities on seismic behavior of reinforced concrete member under ground motions have been limited to the shaking table test or equivalent static cyclic test and the obtained results have been summarized and proposed for the seismic design retrofit of structural columns or shear walls. The present study predicted the seismic response and failure behavior of reinforced concrete shear wall subjected to base acceleration using the finite element method. A decrease in strength and stiffness, yielding of reinforcing bar, and repetition of crack closing and opening due to seismic load with cyclic nature are accompanied by the crack which is necessarily expected to take place in concrete member. In this study the nonlinear material models for concrete and reinforcing bar based on biaxial stress field and algorithm of dynamic analysis were combined to construct the analytical program using the finite element method. The analytical seismic response and failure behaviors of reinforced concrete shear wall subjected to several base accelerations were compared with reliable experimental result.

  • PDF

The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements (설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰)

  • Kim, Do-Kyoun;Jang, Han-Teak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.445-453
    • /
    • 2013
  • This paper was calculated the earthquake load using ELFP(Equivalent Lateral Force Procedure) and RSA(Response Spectrum Analysis) for PSC Box Girder representative bridges by the Phase of KTX designed by ELFP and verified the difference of these analyses. It have been modeled 3 dimensional FE model of 5 bridges using a commercial FEM program for the comparison of these analyses using a commercial FEM program and were compared the earthquake load. It has been to confirm the increase of the difference ELFP of RSA calculated to seismic ground acceleration according to the ground condition and natural period. It is mean that the necessity of seismic reinforcement due to the application of a larger of earthquake load than designed earthquake load form the seismic performance evaluation result according to the difference of calculated earthquake loads.