• Title/Summary/Keyword: design formula

Search Result 1,321, Processing Time 0.034 seconds

A Study on Shear Capacity of High Strength Lightweight Reinforced Concrete T-Beams (고강도 경량콘크리트를 사용한 철근콘크리트 T 형보의 전단성능)

  • 김진수;김원호;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.220-225
    • /
    • 1993
  • This paper is an experimental study on shear capacity of the high strength lightweight reinforced concrete beams with shear-depth ratio between 1.5 and 2.5. Thirteen T & rectangular beams were tested to determine their diagonal cracking and ultimate shear capacity. The major variables are shear span-depth ratio (a/d=1.5, 2.0, 2.5), concrete compressive strength(f'c=210, 24., 270㎏/㎠) and tensile steel ratio( =0.6, 1.2%). Based on results obtained from experiment of high strength lightweight reinforced concrete Beam & normal concrete, the following conclusions were drawn. (1) The shear capacity of high-strength lightweight concrete is less 15% than that of normal concrete under same condition. (2) As the results of Comparing this experimental datas with other various formulas. It is regarded that ACI 318-89 shear strength formula related tensile strength is proper to design formula of shear strength of high-strength lightweight reinforced concrete using lightweight concrete.

  • PDF

Fire Resistance Performance of FRP Rebar Reinforced Concrete Columns

  • Wang, Hui;Zha, Xiaoxiong;Ye, Jianqiao
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.111-117
    • /
    • 2009
  • Concrete columns reinforced with Fibre Reinforced Polymer (FRP) rebar have been increasingly used in civil engineering applications, while the research on fire resistance of such structural members is still very limited. In this paper, attempts are made to predict temperature distribution and mechanical performance of FRP rebar reinforced concrete columns in fire. The effect of concrete cover and section size on fire resistance time is studied by the finite element method. Based on a parametric study, a simple empirical formula to predict fire resistance time is proposed for possible adoption in fire resistance design.

Modified Ziegler-Nichols PID Controller Design using the Fuzzy Logic System

  • Jung, Kyung-kwon;Eom, Ki-hwan;Chung, Sung-boo;Lee, Hyun-kwan;Son, Dong-seol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.2-85
    • /
    • 2001
  • In this paper, we propose a modified Ziegler-Nichols PID controller using the fuzzy logic system. The proposed method is to parameterize a Ziegler-Nichols formula with a single parameter, and use the fuzzy logic system for automatic tuning of a single parameter of the modified Ziegler-Nichols formula. The fuzzy logic system has simple nine control rules. In order to verify the effectiveness of the proposed method, we simulated with the servo system. Simulation results demonstrate that better control performance can be achieved when compared with that of the Ziegler-Nichols PID controller.

  • PDF

Relation of Deformation between Die and Product in Backward extrusion (후방압출 공정에서 금형과 제품의 변형관계)

  • 박태식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.83-87
    • /
    • 2000
  • The die for cold forging gets a ver high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain a product with highly accurate dimension therefore it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between a die and a product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion which can be applied in the die design for the product with accurate dimension

  • PDF

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.76-79
    • /
    • 1999
  • The study has been performed for the relation between die and product in forward extrusion by the experiment. Strains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die and the history of the deformation of the die and product is given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful results for the deformation history of the die and product through the experiment and Lame's formula at forward extrusion for solid cylinder and can be applied to the die design for product with accurate dimension.

  • PDF

Compatibility inspection for the way for Decision about Bight Flow Profile of Standard River Design (하천설계기준의 만곡부 수면형 결정 방법에 대한 적용성 검증)

  • Choi, Han-Kuy;Che, Hong-Gi;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.43-51
    • /
    • 2006
  • Through the result of calculating the deviation between the value calculated from two-dimensional number formula, one-dimensional number interpretation, and curving part water surface type calculation method, we could confirmed that the deviation is reduced more than 50% when we use curving part water surface type calculation method. Also it was confirmed that there occurs the reduction rate of maximum 59% as the result of comparing with one-dimensional number interpretation since the reduction rate of safe room height was 20%, in 500 CMS of flood water quantity when we planted the construction of levee by curving part water surface type calculation method. And therefore, we have confirmed that the curving water surface type calculation method can be used as a simple formula in rivers with water quantity less than 500 CMS that flows in and out in Jess than 90 degree angle.

  • PDF

Operating Range Expansion of a Closed-Loop Stepping Motor by Optimal Lead Angle Control (초적 Lead Angle 제어에 의한 폐루프 스테핑 전동기의 운전영역 확대)

  • 우광준;이종언;이현창
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.80-87
    • /
    • 1995
  • In this paper, we design the microcontroller-based optimal lead angle control system on the basis of the presented maximum average torque formula of the permanent-type stepping motor with respect to the inductance. We confirm that optimal lead angle enlarges the operating range twice as much and increases the torque over all of the operating range in the case of presented formula as well as experimental results.

  • PDF

Concrete Shear Strength of HIRC Beams Reinforced with a SMA

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.75-82
    • /
    • 2018
  • The aim of the study is to evaluate the concrete shear strength and structural behavior of two general beams and eight shape memory alloys (SMAs)-reinforced beams under the flexural test. This work compares the existing reference formula for concrete shear strength with test result to provide the basic data for the design of highly intelligent reinforced concrete (hereinafter, HIRC) beams. The evaluation of the concrete shear strength was performed with effective depth (d=65, 70, 80), SMA diameter change (ø=2.0, 2.5) as the main variables of the specimens. For the relationship between the effective depth and the $V_{\exp}/V_{cal}$, the test result shows that the concrete shear strength gradually approaches 1.0 as the effective depth length increase. For the AIJ formula, the specimens are approached evenly for comparison between $V_{\exp}/V_{cal}$ and the by-product (garnet, fly-ash) reinforced specimen; however, other formulas indicate a deviation.

Error Estimation for the Semi-Analytic Design Sensitivity Using the Geometric Series Expansion Method (기하급수 전개법을 이용한 준해석 민감도의 오차 분석)

  • Dan, Ho-Jin;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.262-267
    • /
    • 2003
  • Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한 연구)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.563-568
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. The strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. The inner pressure of die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting, and can be applied in the die design for product with accurate dimension.

  • PDF