• Title/Summary/Keyword: design formula

Search Result 1,311, Processing Time 0.03 seconds

A Study on the Stiffness of Wave Washer Spring (웨이브 와셔 스프링의 강성치에 관한 연구)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.74-81
    • /
    • 1996
  • The wave washer springs are widely used in non-return valves of fluid, especially in air check valves to confirm the rapid shut-off of valve propers. The stiffness of wave washer springs used in suction and exhaust valves of reciprocating air compressor play an important role on efficiency of the compressor. If the stiffness of the spring is too high, the pressure differences necessary to open the valves become high and the volumetric efficiency of cylinder decreasse. If the stiffness of the spring too low, the valve can not be closed rapidly and the inverse flow of air can take place. So, the optimum stiffness of valve spring is very important and it will be very helpful that the stiffness of wave washer springs to be used in suction and exhaust valves can be calculated in design stage of air compressor. In this paper the formula for calculating the spring constant of wave washer spring is introduced using bending and torsion theory of frames. The experiments are also carried out to measure the spring constants of several samples. It is proven that the calculated spring constants of wave washer springs are coincided well with measured values and that the formula presented in this paper for calculating the spring constants of wave washer spring is very useful for design of valves used in reciprocating air compressor.

  • PDF

Ice Load Prediction Formulas for Icebreaking Cargo Vessels (쇄빙상선의 빙하중 추정식 고찰)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • One of the concerns that arise during navigation in ice-covered waters is the magnitude of ice loads encountered by ships. However, the accurate estimation of ice loads still remains as a rather difficult task in the design of icebreaking vessels. This paper focuses on the development of simple ice load prediction formulas for the icebreaking cargo vessels. The maximum ice loads are expected from unbroken ice sheet and these loads are most likely to be concentrated at the bow area. Published ice load data for icebreaking vessels, from the model tests and also from full-scale sea trials, are collected and then several ice load prediction formulas are compared with these data. Finally, based on collected data, a semi-empirical ice load prediction formula is recommended for the icebreaking cargo vessels.

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.

Simplified Formula for Predicting the Ballistic Limit Velocity of High Strength Shipbuilding Steel Plates Based on Experimental Data (함정용 고장력 판재의 방호한계속도 추정을 위한 간이 실험식)

  • Moon, Seok-Jun;Kim, Won;Song, Jinseop;Choi, Jong-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.322-329
    • /
    • 2021
  • Naval ships are designed to have a variety of active and passive systems to defend against enemy threats. One of the passive defense systems is to protect crew members and core equipment against the threat by using the outer plate of the equipment. This study was intended to deal with design methods against small arms ammunition and fragments. The Korea Institute of Machinery and Materials has measured the ballistic limit velocity of two types of high-tensile plate materials (AH36 and EH36) widely used in ships and offshore structures through tests in cooperation with various related organizations, and the result data is continuously accumulated. Based on the accumulated test results and data, such as mil test certificates of plate materials, it is intended to estimate the protection limit speed of high-tensile plates and to develop a simple calculating formula that can be used in the early design stage.

A Single-layer Differential Codebook Design Over Pedestrian Closed-loop MISO System (보행자 채널의 폐루프 MISO 시스템에서 적응형 단일계층 차분 코드북 설계)

  • Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.613-622
    • /
    • 2019
  • A differential codebook design method using wireless channel's temporal correlation is proposed over closed loop multiple-input single-output (MISO) system. The single layer codewords in a codebook are selected among a set of phase elements. In the conventional codeword selection rule, codewords are assumed to be on a spherical cap and sine formula was used. In this paper, however, a new method using Pythagoras formula is employed to simplify computational complexity. Also, an adaptive differential codebook selection is adopted to enhance performance. Monte-Carlo simulations demonstrate that the proposed codebook is superior to the conventional ones.

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Wind load estimation of a 10 MW floating offshore wind turbine during transportation and installation by wind tunnel tests (풍동시험을 활용한 10 MW급 부유식 해상풍력터빈 운송 및 설치 시 풍하중 예측)

  • In-Hwan Sim
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • As the generation capacity of floating offshore wind turbines increases, the wind load applied to each turbine increases. Due to such a high wind load, the capacity of transport equipment (such as tugboats or cranes) required in the transportation and installation phases must be much larger than that of previous small-capacity wind power generation systems. However, for such an important wind load prediction method, the simple formula proposed by the classification society is generally used, and prediction through wind tunnel tests or Computational Fluid Dynamics (CFD) is rarely used, especially for a concept or initial design stages. In this study, the wind load of a 10 MW class floating offshore wind turbine was predicted by a simplified formula and compared with results of wind tunnel tests. In addition, the wind load coefficients at each stage of fabrication, transportation, and installation are presented so that it can be used during a concept or initial design stages for similar floating offshore wind turbines.

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

Development of a Descriptive Paper Test Item and a Counting Formula for Evaluating Elementary School Students' Scientific Hypothesis Generating Ability (초등학생의 과학적 가설생성능력 평가를 위한 서술형 지필과제 및 가설생성능력지수 산출식의 개발)

  • Jo, Eun Byul;Shin, Dong Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.2
    • /
    • pp.137-149
    • /
    • 2016
  • The purpose of this study is to develop a descriptive paper test item which can evaluate elementary school students' HGA (scientific Hypothesis Generating Ability) and to propose a counting formula that can easily assess student's HGA objectively and quantitatively. To make the test item can possibly evaluate all the students from 6th graders to 3rd graders, the 'rabbit's ear' item is developed. Developed test item was distributed to four different elementary schools in Seoul. Total 280 students who were in the 6th grade solved the item. All the students' reponses to the item were analyzed. Based on the analyzed data evaluation factors and evaluation criteria are extracted to design a Hypothesis Generating ability Quotient (HGQ). As the result 'Explican's Degree of Likeness' and 'Hypothesis' Degree of Explanation' are chosen as evaluation factors. Also precedent evaluation criteria were renewed. At first, Explican's Degree of Likeness evaluation criterion was turned four levels into three levels and each content of evaluation criterion is also modified. Secondly, new evaluation factor 'Hypothesis' Degree of Explanation' was developed as combined three different evaluation criteria, 'level of explican', 'number of explican' and 'structure of explican'. This evaluation factor was designed to assess how the suggested hypothesis can elaborately explain the cause of one phenomenon. Newly designed evaluation factors and evaluation criteria can assess HGA more in detail and reduce the scoring discordant through the markers. Lastly, Developed counting formula is much more simple than precedent Kwon's equation for evaluating the Hypothesis Explanation Quotient. So it could help easily distinguish one student's scientific hypothesis generating ability.