• Title/Summary/Keyword: design flood level

Search Result 129, Processing Time 0.031 seconds

Flood Alert and Warning Scheme Based on Intensity-Duration-Quantity (IDQ) Curve considering Antecedant Moisture Condition (선행함수지수를 고려한 강우강도-지속시간-홍수량(IDQ) 곡선기반의 홍수예경보기법)

  • Kim, Jin-Gyeom;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1269-1276
    • /
    • 2015
  • The methodology of utilizing Intensity-Duration-flood Quantity (IDQ) curve for flood alert and warning was introduced and its performance was evaluated. For this purpose the lumped parameter model was calibrated and validated for gauged basin data set and the index precipitation equivalent to alert and warning flood was estimated. The index precipitation and IDQ curves associated by three different Antecedant Moisture Conditions (AMCs) are made provision for various possible flood scenarios. The test basin is Wonju-cheon basin ($94.4km^2$) located in Gangwon province, Korea. The IDQ curves corresponding to alert (50% of design flood level) and warning (70% of design flood level) level was estimated using the Clark unit hydrograph based lumped parameter model. The performance evaluation showed 0.704 of POD (Probability of Detection), 0.136 of FAR (False Alarm Ratio), and 0.633 of CSI (Critical Success Index), which is improved from the result of IDQ with single fixed AMC.

Estimation of Design Floods Using 3 and 4 Parameter Kappa Distributions (3변수 및 4변수 Kappa 분포에 의한 설계홍수량 추정)

  • Maeng, Seung-Jin;Kim, Byeoung-Jun;Kim, Hyung-San
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.49-55
    • /
    • 2009
  • This paper is to induce design floods through L-moment with 3 and 4 parameter Kappa distributions including test of independence by Wald-Wolfowitz, homogeneity by Mann-Whitney and outlier by Grubbs-Beck on annual maximum flood flows at 9 water level gaging stations in Han, Nakdong and Geum Rivers of South Korea. After analyzing appropriateness of the data of annual maximum flood flows by Kolmogorov-Smirnov test, 3 and 4 Kappa distributions were applied and the appropriateness was judged. The parameters of 3 and 4 Kappa distributions were estimated by L-moment method and the design floods by water level gaging station was calculated. Through the comparative analysis using the relative root mean square errors (RRMSE) and relative absolute errors (RAE) calculated by 3 and 4 parameter Kappa distributions with 4 plotting position formulas, the result showed that the design floods by 4 parameter Kappa distribution with Weibull and Cunnane plotting position formulas are closer to the observed data than those obtained by 3 parameter Kappa distribution with 4 plotting position formulas and 4 parameter Kappa distribution with Hazen and Gringorten plotting position formulas.

Numerical Analysis in Hydrograph Determination for Sluice Gate installed Levee (배수통문이 설치된 제방의 설계수위파형결정에 관한 수치해석)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • According to national regulations and its commentary, such as Rivers Design Criteria & Commentary (KWRA, 2009), Foundation Structure Guideline and its Commentary(MLTM, 2014 and KGS, 2009), the integrity evaluation of river levee includes slope stability evaluation of both riverside/protected low-land and piping stability evaluation with respect to foundation and levee body along with water level conditions. In this case the design hydro-graph can be the most important input factor for the integrity evaluation, however it is fact that the national regulations do not provide any proper determination methods regarding hydro-graph. The authors thus executed an integrity evaluation of sluice gate in levee by changing each hydro-graph factor, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency, in order to suggest a determination method of reasonable hydro-graph. As a result, the authors suggested that at least over 57 hours of rising ordinary water level and over 53 hours of lasting flood water level should be considered for the design hydro-graph of sluice gate in levee at Mun-san-jae.

Analysis on Flood Control Effect of Siphon Spillway by Reservoir Routing (저수지 추적을 통한 사이펀 여수로의 홍수조절 효과 분석)

  • Ko, Suhyeon;Kim, Jaeyoung;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.55-63
    • /
    • 2013
  • Agricultural small dam reservoirs in Korea are vulnerable to flooding because of insufficient flood control capacity and deterioration such that reservoir water level is likely to rise rapidly and a large amount of water release quickly to downstream without flood warning. In this study, we performed hydrologic analysis to estimate design flood(200 years return period ${\times}1.2$) and also evaluated the effect of siphon spillway as a structural countermeasure for flood control and mitigation by applying reservoir routing to the Jipyeong reservoir, located in Sangju, Korea. The results show that the design flood was calculated at $284.3m^3/s$, and water level and water release decreased by 40cm and $91m^3/s$, respectively.

Investigation into the Range of Effect of the Tide Level of Oncheon River Using Delft-3D (Delft-3D를 이용한 온천천의 조위 영향범위 검토)

  • Lee, Sang-Hwa;Lee, Han-Seung;Kim, Jae-Jung;Park, Dong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.465-472
    • /
    • 2012
  • Recently, as the development of water front and natural type river is gradually increasing, it is mostly the case in that the flow analysis is implemented by only the flood level of the starting point without the tidal effect when the flood water level of the starting point is highly estimated than the high tidal water level in the design of river adjacent to an estuary. This research has analyzed the variation of tidal current for Oncheon river in Busan using Delft-3D program, considering that the tidal effect can cause the change of the flood water level of the starting point although the flood water level is higher than the flood tide level. As a result, considering the tidal effect at downstream boundary condition, water level indicates a periodicity of tide in particular region and the fluctuation range of water level is extended to upstream.

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

A Study on the Limit of Submerged Flow in Side Channel Spilway (측수로 여수토의 체류한계에 관한 연구)

  • 백은기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2716-2725
    • /
    • 1972
  • Side channel spillways based on Hinds theory were tested. Surface water level at the beginning point of side channel is the same as the crest level of weir in the usual design. Here, side channel section were moved upwards $\frac{1}{2}$ of the total head on the crest and test(revised experiment) were made. In the revised experiments, coefficients of discharge for design flood (Q) were the same with that of original design experiments. In case of 1.2Q a little influence of submergence were appeared, coefficients of discharge were decreased to be about 97.6% of that of original design experiments, therefore, Reservoir flood water level become higher about 2-3cm than original case. So revised design can be used for actual purpose and it will brings much savings in construction cost of side channel spillway.

  • PDF

Effects of Operation of the Kyeongpo Retarding Basin on Flood Water Levelin Kyeongpo Lake (경포유수지 운영이 경포호의 홍수위에 미치는 영향)

  • Park, Sang Doeg;Lee, Seungkyu;Shin, Seung Sook;Yoon, Byung Man
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Effects of the design flood share of the Kyeongpo retarding basin, which has a function for flood control of the Kyeongpo river assigned to the Kyeongpo prickly water lily wetland, on the Kyeongpo lake and the downstream of Kyeongpo river were analyzed on the bassis of the hydraulic experiments and the numerical simulations using RMA-2 model. Reproducing a complex water flow system of the area of Kyeongpo lake, the unsteady flow simulations were performed. The data obtained in hydraulic experiments were used to determine parameters of the numerical model which simulated the flows for various flood scenarios in the downstream area of Kyeongpo river. With increasing the design flood share rates in the retarding basin, the water level was increased in the lake and is decreased in the river. The characteristics of flood flow interaction between Kyeongpo river and Kyeongpo lake were understood. These results may be used to management the Kyeongpo lake during flood season.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

Development of Realtime Flood Monitoring System composed of CCD Camera and Water Level Gauge (CCD 카메라와 수위계를 조합한 철도교량 실시간 홍수위 감시시스템 개발)

  • Park, Young-Kon;Yoon, Hee-Taek;Kim, Seon-Jong;Shin, Min-Ho;Jung, Seung-Yong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.224-228
    • /
    • 2004
  • In these days, as it frequently happens that water level in the river exceeds the design floods due to irregular heavy rainfall, so it is required, first of an, to manage with railroad bridge safely. Because train control criterion under heavy rainfall is still not prepared and automatic flood monitoring system for railroad bridges is not used, worry over invisible economic loss due to train passage delay is in existence. Therefore, it is important to secure the safety and detect the risk like turnover or failure of railroad bridges through systematic disaster prevention system. And the transition from conventional monitoring method to real time monitoring method supported by sensors and communication system with high technology is rapidly needed. This research is on developing the real time flood monitoring system which prevents railroad disasters in advance by detecting continuously the water level of railroad bridge through CCD camera and water level gauge.

  • PDF