• Title/Summary/Keyword: design effect

Search Result 19,175, Processing Time 0.051 seconds

Determination of Design Flood Levels for the Tidal Reach of the Han River

  • Jun, Kyungsoo;Li, Li
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.173-173
    • /
    • 2015
  • The flood water level in tidal river is determined by the joint effects of flood discharge and tidal water levels at downstream boundary. Due to the variable tidal boundary conditions, the evaluated design water levels associated with a certain flood event can be significantly different. To avoid determining of design water levels just by a certain tidal boundary condition and remove the influence of variability in boundary condition from the evaluation of design water levels, a probabilistic approach is considered in this study. This study focuses on the development of a method to evaluate the realistic design water levels in tidal river with taking into account the combined effects of river discharge and tidal level. The flood water levels are described by the joint probability of two driving forces, river discharge and tidal water levels. The developed method is applied to determine design water levels for the tidal reach of the Han River. An unsteady flow model is used to simulate the flow in the reach. To determine design water levels associated with a certain flood event, first, possible boundary conditions are obtained by sampling starting times of tidal level time series; then for each tidal boundary condition, corresponding peak water levels along the channel are computed; and finally, design water levels are determined by computing the expectations of the peak water levels. Two types of tides which are composed by different constituents are assumed (one is composed by $M_2$, and the other one is composed by $M_2$ and $M_2$) at downstream boundary, and two flood events with different maximum flood discharges are considered in this study. It is found that (a) the computed design water levels with two assumed tides have no significant difference for a certain flood event, though variability of peak water levels due to the tidal effect is considerably different; (b) tidal effect can reach to the Jamsil submerged weir and the effect is obvious in the downstream reach of the Singok submerged weir; (c) in the tidally affected reach, the variability of peak water levels due to the tidal effect is greater if the maximum flood discharge is smaller.

  • PDF

A Study on Public Exhibition applied Emotional Marketing - Focused on Public Exhibition Proposals of the G Environment Improvement Project and D New Town - (감성마케팅을 적용한 홍보전시관 디자인에 관한 연구 -수도권 G지역 종합 홍보전시관과 D지역 뉴타운 홍보전시관을 중심으로-)

  • Yang, Hye-Jin;Kim, Nam-Hyo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.1
    • /
    • pp.40-53
    • /
    • 2010
  • The purpose of this study was verified the effect of analyzed emotional factors and compare with competed design proposals of G and D public exhibition to plan the public exhibition applied emotional marketing which strengthen the effect with touching the emotion. The results are first, public consumer preferred to experience 5 senses and gives a positive effect, second, preference according to factor of scene gives differences by ages, but various ages preferred to experience the factor of scene, third the result of analyze the relation between preference of scene and 3 groups of 5 senses, which is high, middle, and low preferred had significant relation, and fourth, public consumer preferred to several levels of exhibition than only one level, the space preferred was 'experiencing' space.

  • PDF

Effect of Degradation Processes on Optimal Remediation Design Sorption and First-Order Decay Rate

  • Park, Dong-Kyu;Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.503-508
    • /
    • 2004
  • Optimal remediation design using the pump and treat(P&T) method and natural attenuation was accomplished in consideration for degradation processes, such as sorption and first-order decay rate. Variation of both sorption and first-order decay rate has influence on design of optimal remediation application. When sorption effect increases, the more pumping rate and pumping wells are required. The location of operated wells is on the centerline of contaminant plume and wells near hot spot are mainly operated when sorption effect increases. The higher of first-order decay rate, the less pumping rate is required. These results show that the degradation processes have to be considered as one of the essential factors for optimal remediation design.

  • PDF

The Auxiliary Core Optimal Design of PMLSM to Reduce Detent Force by End Effect (단부효과에 의한 PMLSM의 디텐트력 저감을 위한 보조코어 최적설계)

  • Jang, Ki-Bong;An, Ho-Jin;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.543-548
    • /
    • 2010
  • There are produced the detent force caused by slot-teeth structures, end-effect and parallel magnetization of permanent magnet in permanent magnet linear synchronous motor. In this paper, we proposed to establish the auxiliary core for reducing detent force which is generated the discontinuity of magnetic circuits by end effect. The optimal design of the auxiliary core used a finite element analysis and design of experiment. To demonstrate the validity of the paper, the experiment results are compared with analysis ones.

Sample Size Calculation for Cluster Randomized Trials (임상시험의 표본크기 계산)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.288-292
    • /
    • 2014
  • A critical assumption of the standard sample size calculation is that the response (outcome) for an individual patient is completely independent to that for any other patient. However, this assumption no longer holds when there is a lack of statistical independence across subjects seen in cluster randomized designs. In this setting, patients within a cluster are more likely to respond in a similar manner; patient outcomes may correlate strongly within clusters. Thus, direct use of standard sample size formulae for cluster design, ignoring the clustering effect, may result in sample size that are too small, resulting in a study that is under-powered for detecting the desired level of difference between groups. This paper revisit worked examples for sample size calculation provided in a previous paper using nomogram to easy to access. Then we present the concept of cluster design illustrated with worked examples, and introduce design effect that is a factor to inflate the standard sample size estimates.

A study on design effect models for complex sample survey (설계효과모형 적용에 관한 연구)

  • Park, Inho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.523-531
    • /
    • 2014
  • Design effect is often used in designing and planning sample surveys and/or in evaluating the efficiency of complex design features of the surveys. In this study, we applied Gabler et al. (2006)'s design effect model to 2013 Consumer behavior survey for food that was carried out by stratified two-stage sampling. Usability and adequacy of the design model to a real survey data are discussed and evaluated.

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 층지진하중)

  • 이동근;신용우
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used because of its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumptions that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode and the effect of higher modes is included in an approximate manner. Therefore the prediction of dynamic responses of structures using the equivalent lateral force procedure is not reliable when the effect of higher vibration modes on the dynamic behavior is significant. In this study, design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum analysis are examined. From these results an improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes are proposed.

  • PDF

Performance analysis for the Characteristics of Double/ Single Effect Hybrid type Absorption Chiller (일중/이중효용 하이브리드 타입 흡수식 냉동기 성능 특성에 관한 수치적 연구)

  • You, Da-Young;Song, Tae-Min;Lee, Jung-Byoung;Kim, Hyung-Jin;Im, Ick-Tae;Moon, Sang-Done;Park, Chan-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.272-278
    • /
    • 2009
  • The characteristics of hybrid type absorption chiller are studied numerically to use a waste hot water effectively. In the case of the full load, the concentration and temperature of LiBr solution are increase about $11^{\circ}C$, 1.3% respectively at the single effect generator by hot water. As a result, the heat of the high temperature generator are decrease, so the energy can be saved. As the partial load decreased the consumption ratio of fuels are decreased and the reduction ratio of fuels are increased. The variation of COP with the inlet temperature of hot water is higher than that of the flow rate of hot water. The effect of mean temperature difference with solution and hot water of the generator are higher that of flow rate of hot water, it can effect on COP which is sensitive to heat of generator.

  • PDF

Development of a High Value Added Knit Structure for Middle-aged Women (중년여성을 위한 고부가가치 니트 조직 개발)

  • Lee, Insuk;Kim, Jiyoung
    • Journal of Fashion Business
    • /
    • v.18 no.2
    • /
    • pp.148-165
    • /
    • 2014
  • The purpose of this study is to establish a theory about the necessary structure for knitwear design, and to propose it with the practical data through the actual development of a high value added knit structure. For this study, the market was conducted along with literature reviews on the existing studies and the relevant books about knit structures. The market research aimed at the products released in the spring/summer and fall/winter seasons of 2012-2013, focusing on brand for middle aged women. The utilization of the structure by item and the characteristics of knit design were studied. The research was conducted on S/S products in May and July, and F/W products in October and December. As a result of the market research, it was shown that the lightweight structures with permeability such as plain, lace, links and links, this is repeated and rib structure were frequently utilized during the S/S season, while double structures with good shape stability were greatly utilized during the F/W season. Also, during the F/W season, a cable structure and tubular jacquard that emphasized the volume or cubic effect were frequently used, and there were many jacquard structures where a change of color sense and motive were added. Concerning the knit structures development, the researcher designed the knit structure at the actual production site of the knit fashion. A total of 5 pieces of knit structures were developed by asking a professional for programming and knitting. To the developed structures, the study added a multi-gauged effect, herringbone transformation effect, 3-dimensional surface effect, color effects, geometric patterns, lace penetration effect, and soft surface effect in a water-drop shape. In addition, the structures had differences in the added values by mixing various structures and diversely expressing color sense on the knitting line. This study proposes the direction for 21st century knitwear product design, through the development of a high value added knit structure.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.