• Title/Summary/Keyword: design detail

Search Result 2,159, Processing Time 0.028 seconds

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

Estimation of Settling Efficiency in Sedimentation Basin Using Particle Tracking Method (입자추적기법을 이용한 침전지의 효율 평가)

  • Lee, Kil-Seong;Kim, Sang-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2004
  • Sedimentation basin plays an important role in urban water treatment, and there are many complicated phenomena which need to be understood for efficient design and control of it. Especially, the study on the improvement of settling efficiency is required. In this study, commercial CFD (Computational Fluid Dynamics) program, FLUENT, and particle tracking method were used to simulate the flow in sedimentation basin, and to predict the settling efficiency. Computational domain of real scale was made, and detail factors such as porous wall, and outlet trough were considered instead of being simplified. The simulation results were compared with the experimental data to calibrate the parameters of particle tracking method. Sensitivity analysis showed that the particle diameter had more significant effects on settling efficiency than the particle density. The computation results gave the best agreements with the experimental data, when the value of particle diameter was 26.5 ${\mu}{\textrm}{m}$.

A Numerical Simulations on the Flow over Ogee Spillway with Pier (교각이 설치된 월류형 여수로에서의 흐름에 대한 수치모의)

  • Kim, Dae-Geun;Lee, Jae-Hyung;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.363-373
    • /
    • 2004
  • This study analyzed the hydrodynamic flow behavior on a standard ogee spillway with pier by using FLOW-3D. The simulation results were compared with the experiment data of U.S. Army Corps of Engineers - Waterways Experiment Station (WES) and also compared with 2-dimensional simulation results on a spillway without pier. In particular, the characteristics of the distribution of the overflow nappe and pressure in a spillway with pier were investigated in detail. As for the results of the simulation on the flow rate, overflow nappe, and pressure, although there were a few differences in the experiment results of WES, they were identical in most cases in terms of trend. Summarizing the major flow behavior in a standard ogee spillway with pier, first, the water stage at the center line of the bay was higher than that at the side of the bay along the pier. Second, when the water head was larger than the design head of the spillway, at the upstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the side of the bay along the pier. On the other hand, at the downstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the centerline of the bay.

Experimental Investigation on the Hydraulic Performance of the Regenerative Pump According to the Blade Angle (재생 펌프의 날개 각도에 따른 성능 변화에 관한 실험적 연구)

  • Yoo, Il Su;Choi, Won Chul;Park, Mu Ryong;Lee, Gong Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.5-10
    • /
    • 2013
  • The regenerative pump is a kind of turbomachine which is capable of developing high pressure rise at relatively lower flow rates compared to the centrifugal and axial pumps. Although the efficiency of regenerative pumps is much lower than other turbomachines, still they have been widely used in many industrial applications for working at low specific speeds. There are some theoretical models to analysis the pump performance, however, the effect of the blade angle on the pump performance has not been covered in any model to date. In the present study, experimental study on the regenerative pump performance according to the impeller blade angle and its shape has been carried out. The straight radial blades with forward, backward and chevron blades which have inclined angles of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were tested. The pump performance characteristics as the pressure head, efficiency were obtained depending on the flow rate for every impeller, and their results, expressed in appropriate non-dimensional coefficients, were compared and analysed in detail. From the experimental results, it was found that the pressure head and the efficiency depend strongly on the blade angles as well as the blade type. These experimental data has made it possible to better understand the effects of the blade angle on the pump performance, and widen the applicability of the current performance analysis and design models with including the effect of blade angles.

Effectiveness analysis of pre-cooling methods on hydrogen liquefaction process

  • Yang, Yejun;Park, Taejin;Kwon, Dohoon;Jin, Lingxue;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.20-24
    • /
    • 2020
  • The purpose of this analytic study is to design and examine an efficient hydrogen liquefaction cycle by using a pre-cooler. The liquefaction cycle is primarily comprised of a pre-cooler and a refrigerator. The fed hydrogen gas is cooled down from ambient temperature (300 K) to the pre-cooling coolant temperature (either 77 K or 120 K approximately) through the pre-cooler. There are two pre-cooling methods: a single pre-coolant pre-cooler and a cascade pre-cooler which uses two levels of pre-coolants. After heat exchanging with the pre-cooler, the hydrogen gas is further cooled and finally liquefied through the refrigerator. The working fluids of the potential pre-cooling cycle are selected as liquid nitrogen and liquefied natural gas. A commercial software Aspen HYSYS is utilized to perform the numerical simulation of the proposed liquefaction cycle. Efficiency is compared with respect to the various conditions of the heat exchanging part of the pre-cooler. The analysis results show that the cascade method is more efficient, and the heat exchanging part of the pre-coolers should have specific UA ratios to maximize both spatial and energy efficiencies. This paper presents the quantitative performance of the pre-cooler in the hydrogen liquefaction cycle in detail, which shall be useful for designing an energy-efficient liquefaction system.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

Design of the Web based Mini-PACS (웹(Web)을 기반으로 한 Mini-PACS의 설계)

  • 안종철;신현진;안면환;박복환;김성규;안현수
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • PACS mostly has been used in large scaled hospital due to expensive initial cost to set up the system. The network of PACS is independent of the others: network. The user's PC has to be connected physically to the network of PACS as well as the image viewer has to be installed. The web based mini-PACS can store, manage and search inexpensively a large quantity of radiologic image acquired in a hospital. The certificated user can search and diagnose the radiologic image using web browser anywhere Internet connected. The implemented Image viewer is a viewer to diagnose the radiologic image. Which support the DICOM standard and was implemented to use JAVA programming technology. The JAVA program language is cross-platform which makes easier upgrade the system than others. The image filter was added to the viewer so as to diagnose the radiologic image in detail. In order to access to the database, the user activates his web browser to specify the URL of the web based PACS. Thus, The invoked PERL script generates an HTML file, which displays a query form with two fields: Patient name and Patient ID. The user fills out the form and submits his request via the PERL script that enters the search into the relational database to determine the patient who is corresponding to the input criteria. The user selects a patient and obtains a display list of the patient's personal study and images.

  • PDF

A study on the measurement of thermophysical properties of ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$ and SiC series by a single rectangular pulse heating (방향파 펄스 가열에 의한 ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$, SiC 계열의 열물성치 측정에 관한 연구)

  • 차경옥;장희석;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.145-156
    • /
    • 1990
  • In this study, thermophysical properties of the engineering ceramic materials such as $Al_{2}$O$_{3}$, Si$_{3}$N$_{4}$ and SiC were measured b y a single rectangular pulse heating method. The values of thermal diffusivities, specific heats, and thermal conductivities were measured as a function of temperature ranging form room temperature to 1300K. The measured thermal properties of one group of ceramic material were compared with those of other group and discussed in detail in connection with the chemical composition. Thus, some criteria for thermal design with the engineering ceramic materials were proposed.

Tonality Design for Sound Quality Evaluation in Printer (프린터 음질평가를 위한 순음도 설계)

  • Kim, Eui-Youl;Lee, Young-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.318-327
    • /
    • 2012
  • The operating sound radiated from a laser printer includes tonal noise components caused by the rotating mechanical parts such as gear, shaft, motor, fan, etc. The negative effects of the tonal noise components need to be considered in the process of developing a sound quality index for the quantitative evaluation of the emotional satisfaction in terms of psycho-acoustics. However, in a previous paper, it was confirmed that the Aures tonality did not have enough correlation with the results of jury evaluation. The sound quality index based on loudness, articulation index, fluctuation strength has a little problem in considering the effects of rotating mechanical parts on the sound quality. In this paper, to solve the tonality evaluation problem, the calculation algorithm of Aures tonality was investigated in detail to find the cause of decreasing the correlation. The new tonality evaluation model was proposed by modifying and optimizing the masking effect, loudness ratio, and shape of weighting curve based on the basic algorithm of Aures tonality, and applied to two kinds of operating sound groups in order to verify the usefulness of proposed model. As a result, it is confirmed that the proposed tonality evaluation model has enough correlation and usefulness for expressing the tonalness in the operating sounds of laser printers. In the following paper, this results will be used to model the sound quality index as the input data by using the classification algorithm.

Characterization of Runoff Properties of Non-point Pollutant at a Small Rural Area considering Landuse Types (토지이용 특성을 고려한 소규모 농촌유역의 비점오염물질 유출특성 해석)

  • Bae, Sang-ho;Kim, Weon-jae;Yoon, Young H.;Lim, Hyun-man;Kim, Eun-ju;Park, Jae-roh
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.654-663
    • /
    • 2010
  • Attention has increasingly focused on the pollutant load discharged from rural area since the enforcement of total maximum daily loads (TMDLs) in korea. As one of the methods to control the inflow of pollutant load during wet weather events, local governments are attempting to apply non-point source control facility. To design those facilities appropriately, it is essential to understand the runoff characteristics of pollutants such as TSS, $BOD_5$, $COD_{Cr}$, TP and TN. In the paper, the quantitative analyses for pollutant runoff characteristics were examined in a small rural watershed with the area of about 53 hectares. For a dry weather day and wet weather events, variation patterns of dry weather flow and runoff characteristics of wet weather flows were monitored and investigated. The runoff model using XP-SWMM reflecting the landuse types of the watershed in detail was simulated to perform the sensitivity analyses for several factors influencing on their hydrograph and pollutographs. As a result, for the case of medium and small rainfall events (i. e. total rainfall of 35.8 and 17.5 mm), the impervious area including green house, roof and road which covers relatively low portion of total area (i. e. 16%) caused substantial first flush and the majority of total runoff load. Therefore, it has been concluded that the runoff characteristics of each pollutant and distribution of impervious area should be considered for the establishment of the control strategy of non-point pollutant runoff at a rural area.